Cargando…

Release of extracellular vesicles containing small RNAs from the eggs of Schistosoma japonicum

BACKGROUND: Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis. Secreted extracellular vesicles (EVs) play a key role in pathogen-host interfaces. Previous studies have shown that S. japonicum adult worms can release microRNA (miRNA)-containing EVs, which can transfer th...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Shanli, Wang, Sai, Lin, Yu, Jiang, Pengyue, Cui, Xiaobin, Wang, Xinye, Zhang, Yuanbin, Pan, Weiqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101684/
https://www.ncbi.nlm.nih.gov/pubmed/27825390
http://dx.doi.org/10.1186/s13071-016-1845-2
Descripción
Sumario:BACKGROUND: Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis. Secreted extracellular vesicles (EVs) play a key role in pathogen-host interfaces. Previous studies have shown that S. japonicum adult worms can release microRNA (miRNA)-containing EVs, which can transfer their cargo to mammalian cells and regulate gene expression in recipient cells. Tissue-trapped eggs are generally considered the major contributor to the severe pathology of schistosomiasis; however, the interactions between the host and parasite in this critical stage remain largely unknown. METHODS: The culture medium for S. japonicum eggs in vitro was used to isolate EVs. Transmission electron microscopy (TEM) analysis was used to confirm that vesicles produced by the eggs were EVs based on size and morphology. Total RNA extracted from EVs was analyzed by Solexa technology to determine the miRNA profile. The in vitro internalization of the EVs by mammalian cells was analyzed by confocal microscopy. The presence of EVs associated miRNAs in the primary hepatocytes of infected mice was determined by quantitative real-time PCR (qRT-PCR). RESULTS: EVs were isolated from the culture medium of in vitro cultivated S. japonicum eggs. TEM analysis confirmed that nanosized vesicles were present in the culture medium. RNA-seq analysis showed that the egg-derived EVs contained small non-coding RNA (sncRNA) populations including miRNAs, suggesting a potential role in host manipulation. This study further showed that Hepa1-6, a murine liver cell line, internalized the purified EVs and their cargo miRNAs that were detectable in the primary hepatocytes of mice infected with S. japonicum. CONCLUSIONS: Schistosoma japonicum eggs can release miRNA-containing EVs, and the EVs can transfer their cargo to recipient cells in vitro. These results demonstrate the regulatory potential of S. japonicum egg EVs at the parasite-host interface. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1845-2) contains supplementary material, which is available to authorized users.