Cargando…

Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis

Constitutive photomorphogenesis 9 signalosome (CSN) consists of a total of eight subunits (CSN1-CSN8) in mammalian cells. CSN6 may promote carcinogenesis by positively regulating v-myc avian myelocytomatosis viral oncogene homolog (Myc) and MDM2 proto-oncogene stability, and is regarded as a potenti...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Lin, Liu, Yanqing, Wang, Mei, Qian, Yayun, Dong, Xiaoyun, Gu, Hao, Wang, Haibo, Guo, Shiyu, Hisamitsu, Tadashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101998/
https://www.ncbi.nlm.nih.gov/pubmed/27748879
http://dx.doi.org/10.3892/mmr.2016.5818
Descripción
Sumario:Constitutive photomorphogenesis 9 signalosome (CSN) consists of a total of eight subunits (CSN1-CSN8) in mammalian cells. CSN6 may promote carcinogenesis by positively regulating v-myc avian myelocytomatosis viral oncogene homolog (Myc) and MDM2 proto-oncogene stability, and is regarded as a potential target for cancer therapy. Quercetin has a substantial anticancer effect on various human cancer cells. The present study investigated the effects of quercetin on HT-29 human colorectal cancer cell viability, apoptosis and cell cycle arrest using an MTT assay, flow cytometry, transmission electron microscopy and western blotting. It was determined that quercetin inhibited HT-29 cell viability in a dose-dependent manner. Cell shrinkage, chromatin condensation and nuclear collapse were observed in the 50, 100 and 200 µM quercetin groups. The exposure of HT-29 cells to quercetin led to significant cell cycle arrest in the S-phase. Western blot analysis revealed that quercetin reduced the protein expression levels of phosphorylated-Akt and increased CSN6 protein degradation; therefore, affecting the expression levels of Myc, p53, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein. The overexpression of CSN6 reduced the effect of quercetin treatment on HT-29 cells, suggesting that quercetin-induced apoptosis may involve the Akt-CSN6-Myc signaling axis in HT-29 cells.