Cargando…

The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin

α(1)-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-α(1)-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of end...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickens, Jennifer A., Ordóñez, Adriana, Chambers, Joseph E., Beckett, Alison J., Patel, Vruti, Malzer, Elke, Dominicus, Caia S., Bradley, Jayson, Peden, Andrew A., Prior, Ian A., Lomas, David A., Marciniak, Stefan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Federation of American Societies for Experimental Biology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102109/
https://www.ncbi.nlm.nih.gov/pubmed/27601439
http://dx.doi.org/10.1096/fj.201600430R
_version_ 1782466398317969408
author Dickens, Jennifer A.
Ordóñez, Adriana
Chambers, Joseph E.
Beckett, Alison J.
Patel, Vruti
Malzer, Elke
Dominicus, Caia S.
Bradley, Jayson
Peden, Andrew A.
Prior, Ian A.
Lomas, David A.
Marciniak, Stefan J.
author_facet Dickens, Jennifer A.
Ordóñez, Adriana
Chambers, Joseph E.
Beckett, Alison J.
Patel, Vruti
Malzer, Elke
Dominicus, Caia S.
Bradley, Jayson
Peden, Andrew A.
Prior, Ian A.
Lomas, David A.
Marciniak, Stefan J.
author_sort Dickens, Jennifer A.
collection PubMed
description α(1)-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-α(1)-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-α(1)-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric α(1)-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.—Dickens, J. A., Ordóñez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin.
format Online
Article
Text
id pubmed-5102109
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Federation of American Societies for Experimental Biology
record_format MEDLINE/PubMed
spelling pubmed-51021092016-11-10 The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin Dickens, Jennifer A. Ordóñez, Adriana Chambers, Joseph E. Beckett, Alison J. Patel, Vruti Malzer, Elke Dominicus, Caia S. Bradley, Jayson Peden, Andrew A. Prior, Ian A. Lomas, David A. Marciniak, Stefan J. FASEB J Research α(1)-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-α(1)-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-α(1)-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric α(1)-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.—Dickens, J. A., Ordóñez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin. Federation of American Societies for Experimental Biology 2016-12 2016-09-06 /pmc/articles/PMC5102109/ /pubmed/27601439 http://dx.doi.org/10.1096/fj.201600430R Text en © The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Dickens, Jennifer A.
Ordóñez, Adriana
Chambers, Joseph E.
Beckett, Alison J.
Patel, Vruti
Malzer, Elke
Dominicus, Caia S.
Bradley, Jayson
Peden, Andrew A.
Prior, Ian A.
Lomas, David A.
Marciniak, Stefan J.
The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin
title The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin
title_full The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin
title_fullStr The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin
title_full_unstemmed The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin
title_short The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α(1)-antitrypsin
title_sort endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing z-α(1)-antitrypsin
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102109/
https://www.ncbi.nlm.nih.gov/pubmed/27601439
http://dx.doi.org/10.1096/fj.201600430R
work_keys_str_mv AT dickensjennifera theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT ordonezadriana theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT chambersjosephe theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT beckettalisonj theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT patelvruti theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT malzerelke theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT dominicuscaias theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT bradleyjayson theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT pedenandrewa theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT prioriana theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT lomasdavida theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT marciniakstefanj theendoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT dickensjennifera endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT ordonezadriana endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT chambersjosephe endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT beckettalisonj endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT patelvruti endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT malzerelke endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT dominicuscaias endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT bradleyjayson endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT pedenandrewa endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT prioriana endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT lomasdavida endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin
AT marciniakstefanj endoplasmicreticulumremainsfunctionallyconnectedbyvesiculartransportafteritsfragmentationincellsexpressingza1antitrypsin