Cargando…

Insulin receptor substrate-1 time-dependently regulates bone formation by controlling collagen Iα2 expression via miR-342

Insulin promotes bone formation via a well-studied canonical signaling pathway. An adapter in this pathway, insulin-receptor substrate (IRS)-1, has been implicated in the diabetic osteopathy provoked by impaired insulin signaling. To further investigate IRS-1’s role in the bone metabolism, we genera...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yue, Tang, Chen-Yi, Man, Xiao-Fei, Tang, Hao-Neng, Tang, Jun, Wang, Fang, Zhou, Ci-La, Tan, Shu-Wen, Feng, Yun-Zhi, Zhou, Hou-De
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Federation of American Societies for Experimental Biology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102111/
https://www.ncbi.nlm.nih.gov/pubmed/27623927
http://dx.doi.org/10.1096/fj.201600445RR
Descripción
Sumario:Insulin promotes bone formation via a well-studied canonical signaling pathway. An adapter in this pathway, insulin-receptor substrate (IRS)-1, has been implicated in the diabetic osteopathy provoked by impaired insulin signaling. To further investigate IRS-1’s role in the bone metabolism, we generated Irs-1-deficient Irs-1(smla/smla) mice. These null mice developed a spontaneous mutation that led to an increase in trabecular thickness (Tb.Th) in 12-mo-old, but not in 2-mo-old mice. Analyses of the bone marrow stromal cells (BMSCs) from these mice revealed their differential expression of osteogenesis-related genes and miRNAs. The expression of miR-342, predicted and then proven to target the gene encoding collagen type Iα2 (COL1A2), was reduced in BMSCs derived from Irs-1-null mice. COL1A2 expression was then shown to be age dependent in osteoblasts and BMSCs derived from Irs-1(smla/smla) mice. After the induction of osteogenesis in BMSCs, miR-342 expression correlated inversely with that of Col1a2. Further, Col1a2-specific small interfering RNA (siRNA) reduced alkaline phosphatase (ALP) activity and inhibited BMSC differentiation into osteocyte-like cells, both in wild-type (WT) and Irs-1(smla/smla) mice. Conversely, in Irs-1(smla/smla) osteocytes overexpressing COL1A2, ALP-positive staining was stronger than in WT osteocytes. In summary, we uncovered a temporal regulation of BMSC differentiation/bone formation, controlled via Irs-1/miR-342 mediated regulation of Col1a2 expression.—Guo, Y., Tang, C.-Y., Man, X.-F., Tang, H.-N., Tang, J., Wang, F., Zhou, C.-L., Tan, S.-W., Feng, Y.-Z., Zhou, H.-D. Insulin receptor substrate-1 time-dependently regulates bone formation by controlling collagen Iα2 expression via miR-342.