Cargando…

Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates

Deregulated pathways identified from transcriptome data of two sample groups have played a key role in many genomic studies. Gene-set enrichment analysis (GSEA) has been commonly used for pathway or functional analysis of microarray data, and it is also being applied to RNA-seq data. However, most R...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Sora, Kim, Seon-Young, Nam, Dougu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102490/
https://www.ncbi.nlm.nih.gov/pubmed/27829002
http://dx.doi.org/10.1371/journal.pone.0165919
Descripción
Sumario:Deregulated pathways identified from transcriptome data of two sample groups have played a key role in many genomic studies. Gene-set enrichment analysis (GSEA) has been commonly used for pathway or functional analysis of microarray data, and it is also being applied to RNA-seq data. However, most RNA-seq data so far have only small replicates. This enforces to apply the gene-permuting GSEA method (or preranked GSEA) which results in a great number of false positives due to the inter-gene correlation in each gene-set. We demonstrate that incorporating the absolute gene statistic in one-tailed GSEA considerably improves the false-positive control and the overall discriminatory ability of the gene-permuting GSEA methods for RNA-seq data. To test the performance, a simulation method to generate correlated read counts within a gene-set was newly developed, and a dozen of currently available RNA-seq enrichment analysis methods were compared, where the proposed methods outperformed others that do not account for the inter-gene correlation. Analysis of real RNA-seq data also supported the proposed methods in terms of false positive control, ranks of true positives and biological relevance. An efficient R package (AbsFilterGSEA) coded with C++ (Rcpp) is available from CRAN.