Cargando…

Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest

Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the ‘migratory syndrome’. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involv...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Christopher M., Papanicolaou, Alexie, Mironidis, George K., Vontas, John, Yang, Yihua, Lim, Ka S., Oakeshott, John G., Bass, Chris, Chapman, Jason W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102652/
https://www.ncbi.nlm.nih.gov/pubmed/26331997
http://dx.doi.org/10.1111/mec.13362
Descripción
Sumario:Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the ‘migratory syndrome’. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration‐associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next‐generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state‐of‐the‐art phenotyping platform, we show that field‐collected H. armigera display continuous variation in flight performance with individuals capable of flying up to 40 km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long‐distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa.