Cargando…

The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer

The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in E scherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substr...

Descripción completa

Detalles Bibliográficos
Autores principales: Cléon, François, Habersetzer, Johann, Alcock, Felicity, Kneuper, Holger, Stansfeld, Phillip J., Basit, Hajra, Wallace, Mark I., Berks, Ben C., Palmer, Tracy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102672/
https://www.ncbi.nlm.nih.gov/pubmed/26112072
http://dx.doi.org/10.1111/mmi.13106
_version_ 1782466466477506560
author Cléon, François
Habersetzer, Johann
Alcock, Felicity
Kneuper, Holger
Stansfeld, Phillip J.
Basit, Hajra
Wallace, Mark I.
Berks, Ben C.
Palmer, Tracy
author_facet Cléon, François
Habersetzer, Johann
Alcock, Felicity
Kneuper, Holger
Stansfeld, Phillip J.
Basit, Hajra
Wallace, Mark I.
Berks, Ben C.
Palmer, Tracy
author_sort Cléon, François
collection PubMed
description The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in E scherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate‐bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild‐type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue‐native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild‐type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate‐induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.
format Online
Article
Text
id pubmed-5102672
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-51026722016-11-16 The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer Cléon, François Habersetzer, Johann Alcock, Felicity Kneuper, Holger Stansfeld, Phillip J. Basit, Hajra Wallace, Mark I. Berks, Ben C. Palmer, Tracy Mol Microbiol Research Articles The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in E scherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate‐bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild‐type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue‐native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild‐type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate‐induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer. John Wiley and Sons Inc. 2015-10 2015-07-22 /pmc/articles/PMC5102672/ /pubmed/26112072 http://dx.doi.org/10.1111/mmi.13106 Text en © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Cléon, François
Habersetzer, Johann
Alcock, Felicity
Kneuper, Holger
Stansfeld, Phillip J.
Basit, Hajra
Wallace, Mark I.
Berks, Ben C.
Palmer, Tracy
The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer
title The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer
title_full The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer
title_fullStr The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer
title_full_unstemmed The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer
title_short The TatC component of the twin‐arginine protein translocase functions as an obligate oligomer
title_sort tatc component of the twin‐arginine protein translocase functions as an obligate oligomer
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102672/
https://www.ncbi.nlm.nih.gov/pubmed/26112072
http://dx.doi.org/10.1111/mmi.13106
work_keys_str_mv AT cleonfrancois thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT habersetzerjohann thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT alcockfelicity thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT kneuperholger thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT stansfeldphillipj thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT basithajra thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT wallacemarki thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT berksbenc thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT palmertracy thetatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT cleonfrancois tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT habersetzerjohann tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT alcockfelicity tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT kneuperholger tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT stansfeldphillipj tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT basithajra tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT wallacemarki tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT berksbenc tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer
AT palmertracy tatccomponentofthetwinarginineproteintranslocasefunctionsasanobligateoligomer