Cargando…

Inorganic Nanocarriers Overcoming Multidrug Resistance for Cancer Theranostics

Cancer multidrug resistance (MDR) could lead to therapeutic failure of chemotherapy and radiotherapy, and has become one of the main obstacles to successful cancer treatment. Some advanced drug delivery platforms, such as inorganic nanocarriers, demonstrate a high potential for cancer theranostic to...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Gan, Mi, Peng, Chu, Chengchao, Zhang, Jun, Liu, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102675/
https://www.ncbi.nlm.nih.gov/pubmed/27980988
http://dx.doi.org/10.1002/advs.201600134
Descripción
Sumario:Cancer multidrug resistance (MDR) could lead to therapeutic failure of chemotherapy and radiotherapy, and has become one of the main obstacles to successful cancer treatment. Some advanced drug delivery platforms, such as inorganic nanocarriers, demonstrate a high potential for cancer theranostic to overcome the cancer‐specific limitation of conventional low‐molecular‐weight anticancer agents and imaging probes. Specifically, it could achieve synergetic therapeutic effects, demonstrating stronger killing effects to MDR cancer cells by combining the inorganic nanocarriers with other treatment manners, such as RNA interference and thermal therapy. Moreover, the inorganic nanocarriers could provide imaging functions to help monitor treatment responses, e.g., drug resistance and therapeutic effects, as well as analyze the mechanism of MDR by molecular imaging modalities. In this review, the mechanisms involved in cancer MDR and recent advances of applying inorganic nanocarriers for MDR cancer imaging and therapy are summarized. The inorganic nanocarriers may circumvent cancer MDR for effective therapy and provide a way to track the therapeutic processes for real‐time molecular imaging, demonstrating high performance in studying the interaction of nanocarriers and MDR cancer cells/tissues in laboratory study and further shedding light on elaborate design of nanocarriers that could overcome MDR for clinical translation.