Cargando…
Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors
Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of a...
Autores principales: | Zemp, Roland, Tanadini, Matteo, Plüss, Stefan, Schnüriger, Karin, Singh, Navrag B., Taylor, William R., Lorenzetti, Silvio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102712/ https://www.ncbi.nlm.nih.gov/pubmed/27868066 http://dx.doi.org/10.1155/2016/5978489 |
Ejemplares similares
-
In Vivo Spinal Posture during Upright and Reclined Sitting in an Office Chair
por: Zemp, Roland, et al.
Publicado: (2013) -
Wheelchair Tilt-in-Space and Recline Functions: Influence on Sitting Interface Pressure and Ischial Blood Flow in an Elderly Population
por: Zemp, Roland, et al.
Publicado: (2019) -
The Spinal Curvature of Three Different Sitting Positions Analysed in an Open MRI Scanner
por: Baumgartner, Daniel, et al.
Publicado: (2012) -
Inverse Piezoresistive Nanocomposite Sensors for Identifying Human Sitting Posture
por: Qian, Zhe, et al.
Publicado: (2018) -
An Automated Sitting Posture Recognition System Utilizing Pressure Sensors
por: Tsai, Ming-Chih, et al.
Publicado: (2023)