Cargando…

Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia

Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to meta...

Descripción completa

Detalles Bibliográficos
Autores principales: Lozeron, Pierre, Poujois, Aurélia, Richard, Alexandra, Masmoudi, Sana, Meppiel, Elodie, Woimant, France, Kubis, Nathalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102895/
https://www.ncbi.nlm.nih.gov/pubmed/27891079
http://dx.doi.org/10.3389/fncir.2016.00090
_version_ 1782466498200076288
author Lozeron, Pierre
Poujois, Aurélia
Richard, Alexandra
Masmoudi, Sana
Meppiel, Elodie
Woimant, France
Kubis, Nathalie
author_facet Lozeron, Pierre
Poujois, Aurélia
Richard, Alexandra
Masmoudi, Sana
Meppiel, Elodie
Woimant, France
Kubis, Nathalie
author_sort Lozeron, Pierre
collection PubMed
description Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug’s side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy.
format Online
Article
Text
id pubmed-5102895
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-51028952016-11-25 Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia Lozeron, Pierre Poujois, Aurélia Richard, Alexandra Masmoudi, Sana Meppiel, Elodie Woimant, France Kubis, Nathalie Front Neural Circuits Neuroscience Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug’s side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy. Frontiers Media S.A. 2016-11-10 /pmc/articles/PMC5102895/ /pubmed/27891079 http://dx.doi.org/10.3389/fncir.2016.00090 Text en Copyright © 2016 Lozeron, Poujois, Richard, Masmoudi, Meppiel, Woimant and Kubis. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Lozeron, Pierre
Poujois, Aurélia
Richard, Alexandra
Masmoudi, Sana
Meppiel, Elodie
Woimant, France
Kubis, Nathalie
Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia
title Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia
title_full Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia
title_fullStr Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia
title_full_unstemmed Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia
title_short Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia
title_sort contribution of tms and rtms in the understanding of the pathophysiology and in the treatment of dystonia
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102895/
https://www.ncbi.nlm.nih.gov/pubmed/27891079
http://dx.doi.org/10.3389/fncir.2016.00090
work_keys_str_mv AT lozeronpierre contributionoftmsandrtmsintheunderstandingofthepathophysiologyandinthetreatmentofdystonia
AT poujoisaurelia contributionoftmsandrtmsintheunderstandingofthepathophysiologyandinthetreatmentofdystonia
AT richardalexandra contributionoftmsandrtmsintheunderstandingofthepathophysiologyandinthetreatmentofdystonia
AT masmoudisana contributionoftmsandrtmsintheunderstandingofthepathophysiologyandinthetreatmentofdystonia
AT meppielelodie contributionoftmsandrtmsintheunderstandingofthepathophysiologyandinthetreatmentofdystonia
AT woimantfrance contributionoftmsandrtmsintheunderstandingofthepathophysiologyandinthetreatmentofdystonia
AT kubisnathalie contributionoftmsandrtmsintheunderstandingofthepathophysiologyandinthetreatmentofdystonia