Cargando…

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides

Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety...

Descripción completa

Detalles Bibliográficos
Autores principales: Selig, Malte, Berghäuser, Gunnar, Raja, Archana, Nagler, Philipp, Schüller, Christian, Heinz, Tony F., Korn, Tobias, Chernikov, Alexey, Malic, Ermin, Knorr, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103057/
https://www.ncbi.nlm.nih.gov/pubmed/27819288
http://dx.doi.org/10.1038/ncomms13279
Descripción
Sumario:Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS(2) and MoSe(2)) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS(2), we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures.