Cargando…

One-DOF Superimposed Rigid Origami with Multiple States

Origami-inspired engineering design is increasingly used in the development of self-folding structures. The majority of existing self-folding structures either use a bespoke crease pattern to form a single structure, or a universal crease pattern capable of forming numerous structures with multiple...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiang, Gattas, Joseph M., Chen, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103280/
https://www.ncbi.nlm.nih.gov/pubmed/27830732
http://dx.doi.org/10.1038/srep36883
Descripción
Sumario:Origami-inspired engineering design is increasingly used in the development of self-folding structures. The majority of existing self-folding structures either use a bespoke crease pattern to form a single structure, or a universal crease pattern capable of forming numerous structures with multiple folding steps. This paper presents a new approach whereby multiple distinct, rigid-foldable crease patterns are superimposed in the same sheet such that kinematic independence and 1-DOF mobility of each individual pattern is preserved. This is enabled by the cross-crease vertex, a special configuration consisting of two pairs of collinear crease lines, which is proven here by means of a kinematic analysis to contain two independent 1-DOF rigid-foldable states. This enables many new origami-inspired engineering design possibilities, with two explored in depth: the compact folding of non-flat-foldable structures and sequent folding origami that can transform between multiple states without unfolding.