Cargando…

Risk Factors for Acute Kidney Injury after Congenital Cardiac Surgery in Infants and Children: A Retrospective Observational Study

Acute kidney injury (AKI) after pediatric cardiac surgery is associated with high morbidity and mortality. Modifiable risk factors for postoperative AKI including perioperative anesthesia-related parameters were assessed. The authors conducted a single-center, retrospective cohort study of 220 patie...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sun-Kyung, Hur, Min, Kim, Eunhee, Kim, Won Ho, Park, Jung Bo, Kim, Youngwon, Yang, Ji-Hyuk, Jun, Tae-Gook, Kim, Chung Su
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5104485/
https://www.ncbi.nlm.nih.gov/pubmed/27832187
http://dx.doi.org/10.1371/journal.pone.0166328
Descripción
Sumario:Acute kidney injury (AKI) after pediatric cardiac surgery is associated with high morbidity and mortality. Modifiable risk factors for postoperative AKI including perioperative anesthesia-related parameters were assessed. The authors conducted a single-center, retrospective cohort study of 220 patients (aged 10 days to 19 years) who underwent congenital cardiac surgery between January and December 2012. The incidence of AKI within 7 days postoperatively was determined using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Ninety-two patients (41.8%) developed AKI and 18 (8.2%) required renal replacement therapy within the first postoperative week. Among patients who developed AKI, 57 patients (25.9%) were KDIGO stage 1, 27 patients (12.3%) were KDIGO stage 2, and eight patients (3.6%) were KDIGO stage 3. RACHS-1 (Risk-Adjusted classification for Congenital Heart Surgery) category, perioperative transfusion and fluid administration as well as fluid overload were compared between patients with and without AKI. Multivariable logistic regression analyses determined the risk factors for AKI. AKI was associated with longer hospital stay or ICU stay, and frequent sternal wound infections. Younger age (<12 months) [odds ratio (OR), 4.01; 95% confidence interval (CI), 1.77–9.06], longer cardiopulmonary bypass (CPB) time (OR, 2.45; 95% CI, 1.24–4.84), and low preoperative hemoglobin (OR, 2.40; 95% CI, 1.07–5.40) were independent risk factors for AKI. Fluid overload was not a significant predictor for AKI. When a variable of hemoglobin concentration increase (>3 g/dl) from preoperative level on POD1 was entered into the multivariable analysis, it was independently associated with postoperative AKI (OR, 6.51; 95% CI, 2.23–19.03 compared with no increase). This association was significant after adjustment with patient demographics, medication history and RACHS-1 category (hemoglobin increase >3g/dl vs. no increase: adjusted OR, 6.94; 95% CI, 2.33–20.69), regardless of different age groups and cyanotic or non-cyanotic heart disease. Prospective trials are required to evaluate whether correction of preoperative anemia and prevention of hemoconcentration may ameliorate postoperative AKI in patients who underwent congenital cardiac surgery.