Cargando…

Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants

Respiratory syncytial virus (RSV) causes infections that range from common cold to severe lower respiratory tract infection requiring high-level medical care. Prediction of the course of disease in individual patients remains challenging at the first visit to the pediatric wards and RSV infections m...

Descripción completa

Detalles Bibliográficos
Autores principales: Jong, Victor L., Ahout, Inge M. L., van den Ham, Henk-Jan, Jans, Jop, Zaaraoui-Boutahar, Fatiha, Zomer, Aldert, Simonetti, Elles, Bijl, Maarten A., Brand, H. Kim, van IJcken, Wilfred F. J., de Jonge, Marien I., Fraaij, Pieter L., de Groot, Ronald, Osterhaus, Albert D. M. E., Eijkemans, Marinus J., Ferwerda, Gerben, Andeweg, Arno C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105123/
https://www.ncbi.nlm.nih.gov/pubmed/27833115
http://dx.doi.org/10.1038/srep36603
_version_ 1782466841192431616
author Jong, Victor L.
Ahout, Inge M. L.
van den Ham, Henk-Jan
Jans, Jop
Zaaraoui-Boutahar, Fatiha
Zomer, Aldert
Simonetti, Elles
Bijl, Maarten A.
Brand, H. Kim
van IJcken, Wilfred F. J.
de Jonge, Marien I.
Fraaij, Pieter L.
de Groot, Ronald
Osterhaus, Albert D. M. E.
Eijkemans, Marinus J.
Ferwerda, Gerben
Andeweg, Arno C.
author_facet Jong, Victor L.
Ahout, Inge M. L.
van den Ham, Henk-Jan
Jans, Jop
Zaaraoui-Boutahar, Fatiha
Zomer, Aldert
Simonetti, Elles
Bijl, Maarten A.
Brand, H. Kim
van IJcken, Wilfred F. J.
de Jonge, Marien I.
Fraaij, Pieter L.
de Groot, Ronald
Osterhaus, Albert D. M. E.
Eijkemans, Marinus J.
Ferwerda, Gerben
Andeweg, Arno C.
author_sort Jong, Victor L.
collection PubMed
description Respiratory syncytial virus (RSV) causes infections that range from common cold to severe lower respiratory tract infection requiring high-level medical care. Prediction of the course of disease in individual patients remains challenging at the first visit to the pediatric wards and RSV infections may rapidly progress to severe disease. In this study we investigate whether there exists a genomic signature that can accurately predict the course of RSV. We used early blood microarray transcriptome profiles from 39 hospitalized infants that were followed until recovery and of which the level of disease severity was determined retrospectively. Applying support vector machine learning on age by sex standardized transcriptomic data, an 84 gene signature was identified that discriminated hospitalized infants with eventually less severe RSV infection from infants that suffered from most severe RSV disease. This signature yielded an area under the receiver operating characteristic curve (AUC) of 0.966 using leave-one-out cross-validation on the experimental data and an AUC of 0.858 on an independent validation cohort consisting of 53 infants. A combination of the gene signature with age and sex yielded an AUC of 0.971. Thus, the presented signature may serve as the basis to develop a prognostic test to support clinical management of RSV patients.
format Online
Article
Text
id pubmed-5105123
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51051232016-11-17 Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants Jong, Victor L. Ahout, Inge M. L. van den Ham, Henk-Jan Jans, Jop Zaaraoui-Boutahar, Fatiha Zomer, Aldert Simonetti, Elles Bijl, Maarten A. Brand, H. Kim van IJcken, Wilfred F. J. de Jonge, Marien I. Fraaij, Pieter L. de Groot, Ronald Osterhaus, Albert D. M. E. Eijkemans, Marinus J. Ferwerda, Gerben Andeweg, Arno C. Sci Rep Article Respiratory syncytial virus (RSV) causes infections that range from common cold to severe lower respiratory tract infection requiring high-level medical care. Prediction of the course of disease in individual patients remains challenging at the first visit to the pediatric wards and RSV infections may rapidly progress to severe disease. In this study we investigate whether there exists a genomic signature that can accurately predict the course of RSV. We used early blood microarray transcriptome profiles from 39 hospitalized infants that were followed until recovery and of which the level of disease severity was determined retrospectively. Applying support vector machine learning on age by sex standardized transcriptomic data, an 84 gene signature was identified that discriminated hospitalized infants with eventually less severe RSV infection from infants that suffered from most severe RSV disease. This signature yielded an area under the receiver operating characteristic curve (AUC) of 0.966 using leave-one-out cross-validation on the experimental data and an AUC of 0.858 on an independent validation cohort consisting of 53 infants. A combination of the gene signature with age and sex yielded an AUC of 0.971. Thus, the presented signature may serve as the basis to develop a prognostic test to support clinical management of RSV patients. Nature Publishing Group 2016-11-11 /pmc/articles/PMC5105123/ /pubmed/27833115 http://dx.doi.org/10.1038/srep36603 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Jong, Victor L.
Ahout, Inge M. L.
van den Ham, Henk-Jan
Jans, Jop
Zaaraoui-Boutahar, Fatiha
Zomer, Aldert
Simonetti, Elles
Bijl, Maarten A.
Brand, H. Kim
van IJcken, Wilfred F. J.
de Jonge, Marien I.
Fraaij, Pieter L.
de Groot, Ronald
Osterhaus, Albert D. M. E.
Eijkemans, Marinus J.
Ferwerda, Gerben
Andeweg, Arno C.
Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
title Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
title_full Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
title_fullStr Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
title_full_unstemmed Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
title_short Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
title_sort transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105123/
https://www.ncbi.nlm.nih.gov/pubmed/27833115
http://dx.doi.org/10.1038/srep36603
work_keys_str_mv AT jongvictorl transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT ahoutingeml transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT vandenhamhenkjan transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT jansjop transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT zaaraouiboutaharfatiha transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT zomeraldert transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT simonettielles transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT bijlmaartena transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT brandhkim transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT vanijckenwilfredfj transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT dejongemarieni transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT fraaijpieterl transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT degrootronald transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT osterhausalbertdme transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT eijkemansmarinusj transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT ferwerdagerben transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants
AT andewegarnoc transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants