Cargando…
Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants
Respiratory syncytial virus (RSV) causes infections that range from common cold to severe lower respiratory tract infection requiring high-level medical care. Prediction of the course of disease in individual patients remains challenging at the first visit to the pediatric wards and RSV infections m...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105123/ https://www.ncbi.nlm.nih.gov/pubmed/27833115 http://dx.doi.org/10.1038/srep36603 |
_version_ | 1782466841192431616 |
---|---|
author | Jong, Victor L. Ahout, Inge M. L. van den Ham, Henk-Jan Jans, Jop Zaaraoui-Boutahar, Fatiha Zomer, Aldert Simonetti, Elles Bijl, Maarten A. Brand, H. Kim van IJcken, Wilfred F. J. de Jonge, Marien I. Fraaij, Pieter L. de Groot, Ronald Osterhaus, Albert D. M. E. Eijkemans, Marinus J. Ferwerda, Gerben Andeweg, Arno C. |
author_facet | Jong, Victor L. Ahout, Inge M. L. van den Ham, Henk-Jan Jans, Jop Zaaraoui-Boutahar, Fatiha Zomer, Aldert Simonetti, Elles Bijl, Maarten A. Brand, H. Kim van IJcken, Wilfred F. J. de Jonge, Marien I. Fraaij, Pieter L. de Groot, Ronald Osterhaus, Albert D. M. E. Eijkemans, Marinus J. Ferwerda, Gerben Andeweg, Arno C. |
author_sort | Jong, Victor L. |
collection | PubMed |
description | Respiratory syncytial virus (RSV) causes infections that range from common cold to severe lower respiratory tract infection requiring high-level medical care. Prediction of the course of disease in individual patients remains challenging at the first visit to the pediatric wards and RSV infections may rapidly progress to severe disease. In this study we investigate whether there exists a genomic signature that can accurately predict the course of RSV. We used early blood microarray transcriptome profiles from 39 hospitalized infants that were followed until recovery and of which the level of disease severity was determined retrospectively. Applying support vector machine learning on age by sex standardized transcriptomic data, an 84 gene signature was identified that discriminated hospitalized infants with eventually less severe RSV infection from infants that suffered from most severe RSV disease. This signature yielded an area under the receiver operating characteristic curve (AUC) of 0.966 using leave-one-out cross-validation on the experimental data and an AUC of 0.858 on an independent validation cohort consisting of 53 infants. A combination of the gene signature with age and sex yielded an AUC of 0.971. Thus, the presented signature may serve as the basis to develop a prognostic test to support clinical management of RSV patients. |
format | Online Article Text |
id | pubmed-5105123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51051232016-11-17 Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants Jong, Victor L. Ahout, Inge M. L. van den Ham, Henk-Jan Jans, Jop Zaaraoui-Boutahar, Fatiha Zomer, Aldert Simonetti, Elles Bijl, Maarten A. Brand, H. Kim van IJcken, Wilfred F. J. de Jonge, Marien I. Fraaij, Pieter L. de Groot, Ronald Osterhaus, Albert D. M. E. Eijkemans, Marinus J. Ferwerda, Gerben Andeweg, Arno C. Sci Rep Article Respiratory syncytial virus (RSV) causes infections that range from common cold to severe lower respiratory tract infection requiring high-level medical care. Prediction of the course of disease in individual patients remains challenging at the first visit to the pediatric wards and RSV infections may rapidly progress to severe disease. In this study we investigate whether there exists a genomic signature that can accurately predict the course of RSV. We used early blood microarray transcriptome profiles from 39 hospitalized infants that were followed until recovery and of which the level of disease severity was determined retrospectively. Applying support vector machine learning on age by sex standardized transcriptomic data, an 84 gene signature was identified that discriminated hospitalized infants with eventually less severe RSV infection from infants that suffered from most severe RSV disease. This signature yielded an area under the receiver operating characteristic curve (AUC) of 0.966 using leave-one-out cross-validation on the experimental data and an AUC of 0.858 on an independent validation cohort consisting of 53 infants. A combination of the gene signature with age and sex yielded an AUC of 0.971. Thus, the presented signature may serve as the basis to develop a prognostic test to support clinical management of RSV patients. Nature Publishing Group 2016-11-11 /pmc/articles/PMC5105123/ /pubmed/27833115 http://dx.doi.org/10.1038/srep36603 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Jong, Victor L. Ahout, Inge M. L. van den Ham, Henk-Jan Jans, Jop Zaaraoui-Boutahar, Fatiha Zomer, Aldert Simonetti, Elles Bijl, Maarten A. Brand, H. Kim van IJcken, Wilfred F. J. de Jonge, Marien I. Fraaij, Pieter L. de Groot, Ronald Osterhaus, Albert D. M. E. Eijkemans, Marinus J. Ferwerda, Gerben Andeweg, Arno C. Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants |
title | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants |
title_full | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants |
title_fullStr | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants |
title_full_unstemmed | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants |
title_short | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants |
title_sort | transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105123/ https://www.ncbi.nlm.nih.gov/pubmed/27833115 http://dx.doi.org/10.1038/srep36603 |
work_keys_str_mv | AT jongvictorl transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT ahoutingeml transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT vandenhamhenkjan transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT jansjop transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT zaaraouiboutaharfatiha transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT zomeraldert transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT simonettielles transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT bijlmaartena transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT brandhkim transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT vanijckenwilfredfj transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT dejongemarieni transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT fraaijpieterl transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT degrootronald transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT osterhausalbertdme transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT eijkemansmarinusj transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT ferwerdagerben transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants AT andewegarnoc transcriptomeassistsprognosisofdiseaseseverityinrespiratorysyncytialvirusinfectedinfants |