Cargando…
A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium–palladium heterometallic coordination cage,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105156/ https://www.ncbi.nlm.nih.gov/pubmed/27827376 http://dx.doi.org/10.1038/ncomms13169 |
_version_ | 1782466848324845568 |
---|---|
author | Chen, Sha Li, Kang Zhao, Fang Zhang, Lei Pan, Mei Fan, Yan-Zhong Guo, Jing Shi, Jianying Su, Cheng-Yong |
author_facet | Chen, Sha Li, Kang Zhao, Fang Zhang, Lei Pan, Mei Fan, Yan-Zhong Guo, Jing Shi, Jianying Su, Cheng-Yong |
author_sort | Chen, Sha |
collection | PubMed |
description | Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium–palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h(−1) and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications. |
format | Online Article Text |
id | pubmed-5105156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51051562016-11-18 A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production Chen, Sha Li, Kang Zhao, Fang Zhang, Lei Pan, Mei Fan, Yan-Zhong Guo, Jing Shi, Jianying Su, Cheng-Yong Nat Commun Article Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium–palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h(−1) and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications. Nature Publishing Group 2016-11-09 /pmc/articles/PMC5105156/ /pubmed/27827376 http://dx.doi.org/10.1038/ncomms13169 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Chen, Sha Li, Kang Zhao, Fang Zhang, Lei Pan, Mei Fan, Yan-Zhong Guo, Jing Shi, Jianying Su, Cheng-Yong A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production |
title | A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production |
title_full | A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production |
title_fullStr | A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production |
title_full_unstemmed | A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production |
title_short | A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production |
title_sort | metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105156/ https://www.ncbi.nlm.nih.gov/pubmed/27827376 http://dx.doi.org/10.1038/ncomms13169 |
work_keys_str_mv | AT chensha ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT likang ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT zhaofang ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT zhanglei ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT panmei ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT fanyanzhong ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT guojing ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT shijianying ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT suchengyong ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT chensha metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT likang metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT zhaofang metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT zhanglei metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT panmei metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT fanyanzhong metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT guojing metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT shijianying metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction AT suchengyong metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction |