Cargando…

A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production

Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium–palladium heterometallic coordination cage,...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Sha, Li, Kang, Zhao, Fang, Zhang, Lei, Pan, Mei, Fan, Yan-Zhong, Guo, Jing, Shi, Jianying, Su, Cheng-Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105156/
https://www.ncbi.nlm.nih.gov/pubmed/27827376
http://dx.doi.org/10.1038/ncomms13169
_version_ 1782466848324845568
author Chen, Sha
Li, Kang
Zhao, Fang
Zhang, Lei
Pan, Mei
Fan, Yan-Zhong
Guo, Jing
Shi, Jianying
Su, Cheng-Yong
author_facet Chen, Sha
Li, Kang
Zhao, Fang
Zhang, Lei
Pan, Mei
Fan, Yan-Zhong
Guo, Jing
Shi, Jianying
Su, Cheng-Yong
author_sort Chen, Sha
collection PubMed
description Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium–palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h(−1) and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications.
format Online
Article
Text
id pubmed-5105156
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51051562016-11-18 A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production Chen, Sha Li, Kang Zhao, Fang Zhang, Lei Pan, Mei Fan, Yan-Zhong Guo, Jing Shi, Jianying Su, Cheng-Yong Nat Commun Article Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium–palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h(−1) and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications. Nature Publishing Group 2016-11-09 /pmc/articles/PMC5105156/ /pubmed/27827376 http://dx.doi.org/10.1038/ncomms13169 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Chen, Sha
Li, Kang
Zhao, Fang
Zhang, Lei
Pan, Mei
Fan, Yan-Zhong
Guo, Jing
Shi, Jianying
Su, Cheng-Yong
A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
title A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
title_full A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
title_fullStr A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
title_full_unstemmed A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
title_short A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
title_sort metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105156/
https://www.ncbi.nlm.nih.gov/pubmed/27827376
http://dx.doi.org/10.1038/ncomms13169
work_keys_str_mv AT chensha ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT likang ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT zhaofang ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT zhanglei ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT panmei ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT fanyanzhong ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT guojing ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT shijianying ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT suchengyong ametalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT chensha metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT likang metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT zhaofang metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT zhanglei metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT panmei metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT fanyanzhong metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT guojing metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT shijianying metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction
AT suchengyong metalorganiccageincorporatingmultiplelightharvestingandcatalyticcentresforphotochemicalhydrogenproduction