Cargando…

Sex and Age Effects of Functional Connectivity in Early Adulthood

Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood. Here we ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chao, Cahill, Nathan D., Arbabshirani, Mohammad R., White, Tonya, Baum, Stefi A., Michael, Andrew M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105352/
https://www.ncbi.nlm.nih.gov/pubmed/27527561
http://dx.doi.org/10.1089/brain.2016.0429
_version_ 1782466885000888320
author Zhang, Chao
Cahill, Nathan D.
Arbabshirani, Mohammad R.
White, Tonya
Baum, Stefi A.
Michael, Andrew M.
author_facet Zhang, Chao
Cahill, Nathan D.
Arbabshirani, Mohammad R.
White, Tonya
Baum, Stefi A.
Michael, Andrew M.
author_sort Zhang, Chao
collection PubMed
description Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood. Here we apply regression and graph theoretical analyses to explore the effects of sex and age on FC between the 116 AAL atlas parcellations (a total of 6670 FC measures). rs-fMRI data of 494 healthy subjects (203 males and 291 females; age range: 22–36 years) from the Human Connectome Project were analyzed. We report the following findings. (1) Males exhibited greater FC than females in 1352 FC measures (1025 survived Bonferroni correction; [Formula: see text]). In 641 FC measures, females exhibited greater FC than males but none survived Bonferroni correction. Significant FC differences were mainly present in frontal, parietal, and temporal lobes. Although the average FC values for males and females were significantly different, FC values of males and females exhibited large overlap. (2) Age effects were present only in 29 FC measures and all significant age effects showed higher FC in younger subjects. Age and sex differences of FC remained significant after controlling for cognitive measures. (3) Although sex  [Formula: see text]  age interaction did not survive multiple comparison correction, FC in females exhibited a faster cross-sectional decline with age. (4) Male brains were more locally clustered in all lobes but the cerebellum; female brains had a higher clustering coefficient at the whole-brain level. Our results indicate that although both male and female brains show small-world network characteristics, male brains were more segregated and female brains were more integrated. Findings of this study further our understanding of FC in early adulthood and provide evidence to support that age and sex should be controlled for in FC studies of young adults.
format Online
Article
Text
id pubmed-5105352
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Mary Ann Liebert, Inc.
record_format MEDLINE/PubMed
spelling pubmed-51053522016-11-18 Sex and Age Effects of Functional Connectivity in Early Adulthood Zhang, Chao Cahill, Nathan D. Arbabshirani, Mohammad R. White, Tonya Baum, Stefi A. Michael, Andrew M. Brain Connect Original Articles Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood. Here we apply regression and graph theoretical analyses to explore the effects of sex and age on FC between the 116 AAL atlas parcellations (a total of 6670 FC measures). rs-fMRI data of 494 healthy subjects (203 males and 291 females; age range: 22–36 years) from the Human Connectome Project were analyzed. We report the following findings. (1) Males exhibited greater FC than females in 1352 FC measures (1025 survived Bonferroni correction; [Formula: see text]). In 641 FC measures, females exhibited greater FC than males but none survived Bonferroni correction. Significant FC differences were mainly present in frontal, parietal, and temporal lobes. Although the average FC values for males and females were significantly different, FC values of males and females exhibited large overlap. (2) Age effects were present only in 29 FC measures and all significant age effects showed higher FC in younger subjects. Age and sex differences of FC remained significant after controlling for cognitive measures. (3) Although sex  [Formula: see text]  age interaction did not survive multiple comparison correction, FC in females exhibited a faster cross-sectional decline with age. (4) Male brains were more locally clustered in all lobes but the cerebellum; female brains had a higher clustering coefficient at the whole-brain level. Our results indicate that although both male and female brains show small-world network characteristics, male brains were more segregated and female brains were more integrated. Findings of this study further our understanding of FC in early adulthood and provide evidence to support that age and sex should be controlled for in FC studies of young adults. Mary Ann Liebert, Inc. 2016-11-01 2016-11-01 /pmc/articles/PMC5105352/ /pubmed/27527561 http://dx.doi.org/10.1089/brain.2016.0429 Text en © Chao Zhang, et al., 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Original Articles
Zhang, Chao
Cahill, Nathan D.
Arbabshirani, Mohammad R.
White, Tonya
Baum, Stefi A.
Michael, Andrew M.
Sex and Age Effects of Functional Connectivity in Early Adulthood
title Sex and Age Effects of Functional Connectivity in Early Adulthood
title_full Sex and Age Effects of Functional Connectivity in Early Adulthood
title_fullStr Sex and Age Effects of Functional Connectivity in Early Adulthood
title_full_unstemmed Sex and Age Effects of Functional Connectivity in Early Adulthood
title_short Sex and Age Effects of Functional Connectivity in Early Adulthood
title_sort sex and age effects of functional connectivity in early adulthood
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105352/
https://www.ncbi.nlm.nih.gov/pubmed/27527561
http://dx.doi.org/10.1089/brain.2016.0429
work_keys_str_mv AT zhangchao sexandageeffectsoffunctionalconnectivityinearlyadulthood
AT cahillnathand sexandageeffectsoffunctionalconnectivityinearlyadulthood
AT arbabshiranimohammadr sexandageeffectsoffunctionalconnectivityinearlyadulthood
AT whitetonya sexandageeffectsoffunctionalconnectivityinearlyadulthood
AT baumstefia sexandageeffectsoffunctionalconnectivityinearlyadulthood
AT michaelandrewm sexandageeffectsoffunctionalconnectivityinearlyadulthood