Cargando…

Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions

Hypoxia-inducible transcription factors (HIFs) control adaptation to low oxygen environments by activating genes involved in metabolism, angiogenesis, and redox homeostasis. The finding that HIFs are also regulated by small molecule metabolites highlights the need to understand the complexity of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Burr, Stephen P., Costa, Ana S.H., Grice, Guinevere L., Timms, Richard T., Lobb, Ian T., Freisinger, Peter, Dodd, Roger B., Dougan, Gordon, Lehner, Paul J., Frezza, Christian, Nathan, James A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5106373/
https://www.ncbi.nlm.nih.gov/pubmed/27923773
http://dx.doi.org/10.1016/j.cmet.2016.09.015
_version_ 1782467038559600640
author Burr, Stephen P.
Costa, Ana S.H.
Grice, Guinevere L.
Timms, Richard T.
Lobb, Ian T.
Freisinger, Peter
Dodd, Roger B.
Dougan, Gordon
Lehner, Paul J.
Frezza, Christian
Nathan, James A.
author_facet Burr, Stephen P.
Costa, Ana S.H.
Grice, Guinevere L.
Timms, Richard T.
Lobb, Ian T.
Freisinger, Peter
Dodd, Roger B.
Dougan, Gordon
Lehner, Paul J.
Frezza, Christian
Nathan, James A.
author_sort Burr, Stephen P.
collection PubMed
description Hypoxia-inducible transcription factors (HIFs) control adaptation to low oxygen environments by activating genes involved in metabolism, angiogenesis, and redox homeostasis. The finding that HIFs are also regulated by small molecule metabolites highlights the need to understand the complexity of their cellular regulation. Here we use a forward genetic screen in near-haploid human cells to identify genes that stabilize HIFs under aerobic conditions. We identify two mitochondrial genes, oxoglutarate dehydrogenase (OGDH) and lipoic acid synthase (LIAS), which when mutated stabilize HIF1α in a non-hydroxylated form. Disruption of OGDH complex activity in OGDH or LIAS mutants promotes L-2-hydroxyglutarate formation, which inhibits the activity of the HIFα prolyl hydroxylases (PHDs) and TET 2-oxoglutarate dependent dioxygenases. We also find that PHD activity is decreased in patients with homozygous germline mutations in lipoic acid synthesis, leading to HIF1 activation. Thus, mutations affecting OGDHC activity may have broad implications for epigenetic regulation and tumorigenesis.
format Online
Article
Text
id pubmed-5106373
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-51063732016-11-17 Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions Burr, Stephen P. Costa, Ana S.H. Grice, Guinevere L. Timms, Richard T. Lobb, Ian T. Freisinger, Peter Dodd, Roger B. Dougan, Gordon Lehner, Paul J. Frezza, Christian Nathan, James A. Cell Metab Article Hypoxia-inducible transcription factors (HIFs) control adaptation to low oxygen environments by activating genes involved in metabolism, angiogenesis, and redox homeostasis. The finding that HIFs are also regulated by small molecule metabolites highlights the need to understand the complexity of their cellular regulation. Here we use a forward genetic screen in near-haploid human cells to identify genes that stabilize HIFs under aerobic conditions. We identify two mitochondrial genes, oxoglutarate dehydrogenase (OGDH) and lipoic acid synthase (LIAS), which when mutated stabilize HIF1α in a non-hydroxylated form. Disruption of OGDH complex activity in OGDH or LIAS mutants promotes L-2-hydroxyglutarate formation, which inhibits the activity of the HIFα prolyl hydroxylases (PHDs) and TET 2-oxoglutarate dependent dioxygenases. We also find that PHD activity is decreased in patients with homozygous germline mutations in lipoic acid synthesis, leading to HIF1 activation. Thus, mutations affecting OGDHC activity may have broad implications for epigenetic regulation and tumorigenesis. Cell Press 2016-11-08 /pmc/articles/PMC5106373/ /pubmed/27923773 http://dx.doi.org/10.1016/j.cmet.2016.09.015 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Burr, Stephen P.
Costa, Ana S.H.
Grice, Guinevere L.
Timms, Richard T.
Lobb, Ian T.
Freisinger, Peter
Dodd, Roger B.
Dougan, Gordon
Lehner, Paul J.
Frezza, Christian
Nathan, James A.
Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions
title Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions
title_full Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions
title_fullStr Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions
title_full_unstemmed Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions
title_short Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions
title_sort mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls hif1α stability in aerobic conditions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5106373/
https://www.ncbi.nlm.nih.gov/pubmed/27923773
http://dx.doi.org/10.1016/j.cmet.2016.09.015
work_keys_str_mv AT burrstephenp mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT costaanash mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT griceguineverel mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT timmsrichardt mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT lobbiant mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT freisingerpeter mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT doddrogerb mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT dougangordon mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT lehnerpaulj mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT frezzachristian mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions
AT nathanjamesa mitochondrialproteinlipoylationandthe2oxoglutaratedehydrogenasecomplexcontrolshif1astabilityinaerobicconditions