Cargando…
Response surface and neural network based predictive models of cutting temperature in hard turning
The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were employed to predict the temperature in respect of cut...
Autores principales: | Mia, Mozammel, Dhar, Nikhil R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5106449/ https://www.ncbi.nlm.nih.gov/pubmed/27857850 http://dx.doi.org/10.1016/j.jare.2016.05.004 |
Ejemplares similares
-
Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation
por: Kumar, Pardeep, et al.
Publicado: (2019) -
Intelligent Optimization of Hard-Turning Parameters Using Evolutionary Algorithms for Smart Manufacturing
por: Mia, Mozammel, et al.
Publicado: (2019) -
Study of Residual Stresses and Austenite Gradients in the Surface after Hard Turning as a Function of Flank Wear and Cutting Speed
por: Mičietová, Anna, et al.
Publicado: (2023) -
Precision Hard Turning of Ti6Al4V Using Polycrystalline Diamond Inserts: Surface Quality, Cutting Temperature and Productivity in Conventional and High-Speed Machining
por: Abdelnasser, Elshaimaa, et al.
Publicado: (2020) -
Modelling and Prediction of Cutting Temperature in the Machining of H13 Hard Steel of Transient Heat Conduction
por: Zhang, Jingjie, et al.
Publicado: (2021)