Cargando…

Diversification in wild populations of the model organism Anolis carolinensis: A genome‐wide phylogeographic investigation

The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbe...

Descripción completa

Detalles Bibliográficos
Autores principales: Manthey, Joseph D., Tollis, Marc, Lemmon, Alan R., Moriarty Lemmon, Emily, Boissinot, Stéphane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108263/
https://www.ncbi.nlm.nih.gov/pubmed/27891220
http://dx.doi.org/10.1002/ece3.2547
Descripción
Sumario:The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbers of nuclear loci identified conflicting and poorly supported relationships among geographically structured clades; these inconsistencies preclude confident use of A. carolinensis evolutionary history in association with morphological, physiological, or reproductive biology studies among sampling localities and necessitate increased effort to resolve evolutionary relationships among natural populations. Here, we used anchored hybrid enrichment of hundreds of genetic markers across the genome of A. carolinensis and identified five strongly supported phylogeographic groups. Using multiple analyses, we produced a fully resolved species tree, investigated relative support for each lineage across all gene trees, and identified mito‐nuclear discordance when comparing our results to previous studies. We found fixed differences in only one clade—southern Florida restricted to the Everglades region—while most polymorphisms were shared between lineages. The southern Florida group likely diverged from other populations during the Pliocene, with all other diversification during the Pleistocene. Multiple lines of support, including phylogenetic relationships, a latitudinal gradient in genetic diversity, and relatively more stable long‐term population sizes in southern phylogeographic groups, indicate that diversification in A. carolinensis occurred northward from southern Florida.