Cargando…
Intergeneric fusant development using chitinase preparation of Rhizopus stolonifer NCIM 880
Fungal chitinase have tremendous applications in biotech industries, with this approach we focused on extracellular chitinase from Rhizopus stolonifer NCIM 880 for the formation of fungal protoplasts. The maximum chitinase production reached after 24 h at 2.5% colloidal chitin concentration in prese...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108735/ https://www.ncbi.nlm.nih.gov/pubmed/27844458 http://dx.doi.org/10.1186/s13568-016-0287-8 |
Sumario: | Fungal chitinase have tremendous applications in biotech industries, with this approach we focused on extracellular chitinase from Rhizopus stolonifer NCIM 880 for the formation of fungal protoplasts. The maximum chitinase production reached after 24 h at 2.5% colloidal chitin concentration in presence of starch as an inducer. Chitinase was extracted efficiently at 65% cold acetone concentration and then purified by using DEAE-Cellulose column chromatography. Purified chitinase having molecular weight 22 kDa with single polypeptide chain was optimally active at pH 5.0 and temperature 30 °C. The purified chitinase revealed kinetic properties like Km 1.66 mg/ml and Vmax 769 mM/min. Crude chitinase extract efficiently formed protoplasts from A. niger, A. oryzae, T. viride and F. moniliforme. The formed protoplasts of A. niger and T. viride showed 70 and 66% regeneration frequency respectively. Further, intergeneric fusants were developed successfully and identified at molecular level using RNA profiling. Thus, this study could be useful for strain improvement of various fungi for biotechnological applications. |
---|