Cargando…
Power flow analysis and optimal locations of resistive type superconducting fault current limiters
Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108742/ https://www.ncbi.nlm.nih.gov/pubmed/27900238 http://dx.doi.org/10.1186/s40064-016-3649-4 |
_version_ | 1782467409610801152 |
---|---|
author | Zhang, Xiuchang Ruiz, Harold S. Geng, Jianzhao Shen, Boyang Fu, Lin Zhang, Heng Coombs, Tim A. |
author_facet | Zhang, Xiuchang Ruiz, Harold S. Geng, Jianzhao Shen, Boyang Fu, Lin Zhang, Heng Coombs, Tim A. |
author_sort | Zhang, Xiuchang |
collection | PubMed |
description | Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E–J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations. |
format | Online Article Text |
id | pubmed-5108742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-51087422016-11-29 Power flow analysis and optimal locations of resistive type superconducting fault current limiters Zhang, Xiuchang Ruiz, Harold S. Geng, Jianzhao Shen, Boyang Fu, Lin Zhang, Heng Coombs, Tim A. Springerplus Research Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E–J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations. Springer International Publishing 2016-11-14 /pmc/articles/PMC5108742/ /pubmed/27900238 http://dx.doi.org/10.1186/s40064-016-3649-4 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Zhang, Xiuchang Ruiz, Harold S. Geng, Jianzhao Shen, Boyang Fu, Lin Zhang, Heng Coombs, Tim A. Power flow analysis and optimal locations of resistive type superconducting fault current limiters |
title | Power flow analysis and optimal locations of resistive type superconducting fault current limiters |
title_full | Power flow analysis and optimal locations of resistive type superconducting fault current limiters |
title_fullStr | Power flow analysis and optimal locations of resistive type superconducting fault current limiters |
title_full_unstemmed | Power flow analysis and optimal locations of resistive type superconducting fault current limiters |
title_short | Power flow analysis and optimal locations of resistive type superconducting fault current limiters |
title_sort | power flow analysis and optimal locations of resistive type superconducting fault current limiters |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108742/ https://www.ncbi.nlm.nih.gov/pubmed/27900238 http://dx.doi.org/10.1186/s40064-016-3649-4 |
work_keys_str_mv | AT zhangxiuchang powerflowanalysisandoptimallocationsofresistivetypesuperconductingfaultcurrentlimiters AT ruizharolds powerflowanalysisandoptimallocationsofresistivetypesuperconductingfaultcurrentlimiters AT gengjianzhao powerflowanalysisandoptimallocationsofresistivetypesuperconductingfaultcurrentlimiters AT shenboyang powerflowanalysisandoptimallocationsofresistivetypesuperconductingfaultcurrentlimiters AT fulin powerflowanalysisandoptimallocationsofresistivetypesuperconductingfaultcurrentlimiters AT zhangheng powerflowanalysisandoptimallocationsofresistivetypesuperconductingfaultcurrentlimiters AT coombstima powerflowanalysisandoptimallocationsofresistivetypesuperconductingfaultcurrentlimiters |