Cargando…
Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem
Mean value theorems for both derivatives and integrals are very useful tools in mathematics. They can be used to obtain very important inequalities and to prove basic theorems of mathematical analysis. In this article, a semi-analytical method that is based on weighted mean-value theorem for obtaini...
Autor principal: | Altürk, Ahmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108753/ https://www.ncbi.nlm.nih.gov/pubmed/27933241 http://dx.doi.org/10.1186/s40064-016-3645-8 |
Ejemplares similares
-
A survey of numerical methods for the solution of Fredholm integral equations of the second kind
por: Atkinson, Kendall
Publicado: (1976) -
Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet
por: Amin, Rohul, et al.
Publicado: (2020) -
Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials
por: Mashayekhi, S., et al.
Publicado: (2014) -
Multiscale methods for Fredholm integral equations
por: Chen, Zhongying, et al.
Publicado: (2015) -
A novel approach to solve nonlinear Fredholm integral equations of the second kind
por: Li, Hu, et al.
Publicado: (2016)