Cargando…
Occurrence and source apportionment of Per- and poly-fluorinated compounds (PFCs) in North Canal Basin, Beijing
Various per- and poly-fluorinated compounds (PFCs) were first systematically investigated in North Canal Basin, Beijing, China. A total of 68 surface water samples were collected from North Canal Basin, Beijing, at high spatial resolution. The seasonal disparity was compared and associated with sour...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5109260/ https://www.ncbi.nlm.nih.gov/pubmed/27845351 http://dx.doi.org/10.1038/srep36683 |
Sumario: | Various per- and poly-fluorinated compounds (PFCs) were first systematically investigated in North Canal Basin, Beijing, China. A total of 68 surface water samples were collected from North Canal Basin, Beijing, at high spatial resolution. The seasonal disparity was compared and associated with source variation. PFCs concentrations in low-water period ranged from 26 to 207 ng/L, and significantly declined levels were found in high-water period. The individual component proportions among different sites varied less in high-water period, when runoff played a role in mixing and diluting PFCs. A methodology combined with principal component analysis (PCA), heat map-hierarchical cluster analysis (HM-HCA), and correlation analysis were introduced to discriminate sources of PFCs in surface water. The statistical results agreed with each other, and daily domestic consumption, fire-fighting products and related industries were identified as sources of PFCs in this region. In addition, two composition ratios were proposed through the methodology to distinguish the impact of nonpoint source, and the outcome demonstrates that great disparities exist in compositional profiles between nonpoint source and others. Overall, the results showed that this comprehensive analysis method has great potential for source apportionment in surface water and other environmental compartments. |
---|