Cargando…

A multi-marker association method for genome-wide association studies without the need for population structure correction

All common genome-wide association (GWA) methods rely on population structure correction, to avoid false genotype-to-phenotype associations. However, population structure correction is a stringent penalization, which also impedes identification of real associations. Using recent statistical advances...

Descripción completa

Detalles Bibliográficos
Autores principales: Klasen, Jonas R., Barbez, Elke, Meier, Lukas, Meinshausen, Nicolai, Bühlmann, Peter, Koornneef, Maarten, Busch, Wolfgang, Schneeberger, Korbinian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5109549/
https://www.ncbi.nlm.nih.gov/pubmed/27830750
http://dx.doi.org/10.1038/ncomms13299
_version_ 1782467563520786432
author Klasen, Jonas R.
Barbez, Elke
Meier, Lukas
Meinshausen, Nicolai
Bühlmann, Peter
Koornneef, Maarten
Busch, Wolfgang
Schneeberger, Korbinian
author_facet Klasen, Jonas R.
Barbez, Elke
Meier, Lukas
Meinshausen, Nicolai
Bühlmann, Peter
Koornneef, Maarten
Busch, Wolfgang
Schneeberger, Korbinian
author_sort Klasen, Jonas R.
collection PubMed
description All common genome-wide association (GWA) methods rely on population structure correction, to avoid false genotype-to-phenotype associations. However, population structure correction is a stringent penalization, which also impedes identification of real associations. Using recent statistical advances, we developed a new GWA method, called Quantitative Trait Cluster Association Test (QTCAT), enabling simultaneous multi-marker associations while considering correlations between markers. With this, QTCAT overcomes the need for population structure correction and also reflects the polygenic nature of complex traits better than single-marker methods. Using simulated data, we show that QTCAT clearly outperforms linear mixed model approaches. Moreover, using QTCAT to reanalyse public human, mouse and Arabidopsis GWA data revealed nearly all known and some previously undetected associations. Following up on the most significant novel association in the Arabidopsis data allowed us to identify a so far unknown component of root growth.
format Online
Article
Text
id pubmed-5109549
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51095492017-01-13 A multi-marker association method for genome-wide association studies without the need for population structure correction Klasen, Jonas R. Barbez, Elke Meier, Lukas Meinshausen, Nicolai Bühlmann, Peter Koornneef, Maarten Busch, Wolfgang Schneeberger, Korbinian Nat Commun Article All common genome-wide association (GWA) methods rely on population structure correction, to avoid false genotype-to-phenotype associations. However, population structure correction is a stringent penalization, which also impedes identification of real associations. Using recent statistical advances, we developed a new GWA method, called Quantitative Trait Cluster Association Test (QTCAT), enabling simultaneous multi-marker associations while considering correlations between markers. With this, QTCAT overcomes the need for population structure correction and also reflects the polygenic nature of complex traits better than single-marker methods. Using simulated data, we show that QTCAT clearly outperforms linear mixed model approaches. Moreover, using QTCAT to reanalyse public human, mouse and Arabidopsis GWA data revealed nearly all known and some previously undetected associations. Following up on the most significant novel association in the Arabidopsis data allowed us to identify a so far unknown component of root growth. Nature Publishing Group 2016-11-10 /pmc/articles/PMC5109549/ /pubmed/27830750 http://dx.doi.org/10.1038/ncomms13299 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Klasen, Jonas R.
Barbez, Elke
Meier, Lukas
Meinshausen, Nicolai
Bühlmann, Peter
Koornneef, Maarten
Busch, Wolfgang
Schneeberger, Korbinian
A multi-marker association method for genome-wide association studies without the need for population structure correction
title A multi-marker association method for genome-wide association studies without the need for population structure correction
title_full A multi-marker association method for genome-wide association studies without the need for population structure correction
title_fullStr A multi-marker association method for genome-wide association studies without the need for population structure correction
title_full_unstemmed A multi-marker association method for genome-wide association studies without the need for population structure correction
title_short A multi-marker association method for genome-wide association studies without the need for population structure correction
title_sort multi-marker association method for genome-wide association studies without the need for population structure correction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5109549/
https://www.ncbi.nlm.nih.gov/pubmed/27830750
http://dx.doi.org/10.1038/ncomms13299
work_keys_str_mv AT klasenjonasr amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT barbezelke amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT meierlukas amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT meinshausennicolai amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT buhlmannpeter amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT koornneefmaarten amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT buschwolfgang amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT schneebergerkorbinian amultimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT klasenjonasr multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT barbezelke multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT meierlukas multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT meinshausennicolai multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT buhlmannpeter multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT koornneefmaarten multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT buschwolfgang multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection
AT schneebergerkorbinian multimarkerassociationmethodforgenomewideassociationstudieswithouttheneedforpopulationstructurecorrection