Cargando…
Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer
It is reported that the silicon nanocrystals (NCs) are fabricated by using self-assembly growth method with the annealing and the electron beam irradiation processes in the pulsed laser depositing, on which the visible lasing with higher gain (over 130 cm(−1)) and the enhanced emission in optical te...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110452/ https://www.ncbi.nlm.nih.gov/pubmed/27848235 http://dx.doi.org/10.1186/s11671-016-1707-z |
_version_ | 1782467686766215168 |
---|---|
author | Huang, Wei-Qi Liu, Shi-Rong Huang, Zhong-Mei Wu, Xue-Ke Qin, Chao-Jian Zhuang, Qian-Dong |
author_facet | Huang, Wei-Qi Liu, Shi-Rong Huang, Zhong-Mei Wu, Xue-Ke Qin, Chao-Jian Zhuang, Qian-Dong |
author_sort | Huang, Wei-Qi |
collection | PubMed |
description | It is reported that the silicon nanocrystals (NCs) are fabricated by using self-assembly growth method with the annealing and the electron beam irradiation processes in the pulsed laser depositing, on which the visible lasing with higher gain (over 130 cm(−1)) and the enhanced emission in optical telecommunication window are measured in photoluminescence (PL). It is interesting that the enhanced visible electroluminescence (EL) on silicon nanocrystals (Si-NCs) is obviously observed by the naked eyes, and the light-emitting diode (LED) of the Si-NCs with external quantum efficiency of 20% is made on silicon chip in our laboratory. A four-level system is built for emission model in nanosilicon, in which the PL and EL measurement and transmission electron microscope (TEM) analysis demonstrate that the pumping levels with shorter lifetime from the rising energy of the Si quantum dots due to the quantum confinement effect occur, and the electronic localized states with longer lifetime owing to impurities bonding on Si-NCs surface are formed in the crystallized process to produce the inversion of population for lasing, where the optical gain is generated. |
format | Online Article Text |
id | pubmed-5110452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-51104522016-12-02 Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer Huang, Wei-Qi Liu, Shi-Rong Huang, Zhong-Mei Wu, Xue-Ke Qin, Chao-Jian Zhuang, Qian-Dong Nanoscale Res Lett Nano Express It is reported that the silicon nanocrystals (NCs) are fabricated by using self-assembly growth method with the annealing and the electron beam irradiation processes in the pulsed laser depositing, on which the visible lasing with higher gain (over 130 cm(−1)) and the enhanced emission in optical telecommunication window are measured in photoluminescence (PL). It is interesting that the enhanced visible electroluminescence (EL) on silicon nanocrystals (Si-NCs) is obviously observed by the naked eyes, and the light-emitting diode (LED) of the Si-NCs with external quantum efficiency of 20% is made on silicon chip in our laboratory. A four-level system is built for emission model in nanosilicon, in which the PL and EL measurement and transmission electron microscope (TEM) analysis demonstrate that the pumping levels with shorter lifetime from the rising energy of the Si quantum dots due to the quantum confinement effect occur, and the electronic localized states with longer lifetime owing to impurities bonding on Si-NCs surface are formed in the crystallized process to produce the inversion of population for lasing, where the optical gain is generated. Springer US 2016-11-15 /pmc/articles/PMC5110452/ /pubmed/27848235 http://dx.doi.org/10.1186/s11671-016-1707-z Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Nano Express Huang, Wei-Qi Liu, Shi-Rong Huang, Zhong-Mei Wu, Xue-Ke Qin, Chao-Jian Zhuang, Qian-Dong Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer |
title | Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer |
title_full | Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer |
title_fullStr | Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer |
title_full_unstemmed | Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer |
title_short | Lasing with Pumping Levels of Si Nanocrystals on Silicon Wafer |
title_sort | lasing with pumping levels of si nanocrystals on silicon wafer |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110452/ https://www.ncbi.nlm.nih.gov/pubmed/27848235 http://dx.doi.org/10.1186/s11671-016-1707-z |
work_keys_str_mv | AT huangweiqi lasingwithpumpinglevelsofsinanocrystalsonsiliconwafer AT liushirong lasingwithpumpinglevelsofsinanocrystalsonsiliconwafer AT huangzhongmei lasingwithpumpinglevelsofsinanocrystalsonsiliconwafer AT wuxueke lasingwithpumpinglevelsofsinanocrystalsonsiliconwafer AT qinchaojian lasingwithpumpinglevelsofsinanocrystalsonsiliconwafer AT zhuangqiandong lasingwithpumpinglevelsofsinanocrystalsonsiliconwafer |