Cargando…
dOFV distributions: a new diagnostic for the adequacy of parameter uncertainty in nonlinear mixed-effects models applied to the bootstrap
Knowledge of the uncertainty in model parameters is essential for decision-making in drug development. Contrarily to other aspects of nonlinear mixed effects models (NLMEM), scrutiny towards assumptions around parameter uncertainty is low, and no diagnostic exists to judge whether the estimated unce...
Autores principales: | Dosne, Anne-Gaëlle, Niebecker, Ronald, Karlsson, Mats O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110608/ https://www.ncbi.nlm.nih.gov/pubmed/27730481 http://dx.doi.org/10.1007/s10928-016-9496-7 |
Ejemplares similares
-
Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2016) -
An automated sampling importance resampling procedure for estimating parameter uncertainty
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2017) -
A strategy for residual error modeling incorporating scedasticity of variance and distribution shape
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2015) -
Assessment and application of wavelet-based optical flow velocimetry (wOFV) to wall-bounded turbulent flows
por: Nicolas, Alexander, et al.
Publicado: (2023) -
Bootstrap quantification of estimation uncertainties in network degree distributions
por: Gel, Yulia R., et al.
Publicado: (2017)