Cargando…
Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling
Taking parameter uncertainty into account is key to make drug development decisions such as testing whether trial endpoints meet defined criteria. Currently used methods for assessing parameter uncertainty in NLMEM have limitations, and there is a lack of diagnostics for when these limitations occur...
Autores principales: | Dosne, Anne-Gaëlle, Bergstrand, Martin, Harling, Kajsa, Karlsson, Mats O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110709/ https://www.ncbi.nlm.nih.gov/pubmed/27730482 http://dx.doi.org/10.1007/s10928-016-9487-8 |
Ejemplares similares
-
An automated sampling importance resampling procedure for estimating parameter uncertainty
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2017) -
dOFV distributions: a new diagnostic for the adequacy of parameter uncertainty in nonlinear mixed-effects models applied to the bootstrap
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2016) -
A strategy for residual error modeling incorporating scedasticity of variance and distribution shape
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2015) -
Assessing parameter uncertainty in small-n pharmacometric analyses: value of the log-likelihood profiling-based sampling importance resampling (LLP-SIR) technique
por: Broeker, Astrid, et al.
Publicado: (2020) -
Bootstrap Resampling of Temporal Dominance of Sensations Curves to Compute Uncertainties
por: Okamoto, Shogo
Publicado: (2021)