Cargando…

A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis

Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through bind...

Descripción completa

Detalles Bibliográficos
Autores principales: Simonini, Sara, Deb, Joyita, Moubayidin, Laila, Stephenson, Pauline, Valluru, Manoj, Freire-Rios, Alejandra, Sorefan, Karim, Weijers, Dolf, Friml, Jiří, Østergaard, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110995/
https://www.ncbi.nlm.nih.gov/pubmed/27898393
http://dx.doi.org/10.1101/gad.285361.116
_version_ 1782467786883203072
author Simonini, Sara
Deb, Joyita
Moubayidin, Laila
Stephenson, Pauline
Valluru, Manoj
Freire-Rios, Alejandra
Sorefan, Karim
Weijers, Dolf
Friml, Jiří
Østergaard, Lars
author_facet Simonini, Sara
Deb, Joyita
Moubayidin, Laila
Stephenson, Pauline
Valluru, Manoj
Freire-Rios, Alejandra
Sorefan, Karim
Weijers, Dolf
Friml, Jiří
Østergaard, Lars
author_sort Simonini, Sara
collection PubMed
description Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants.
format Online
Article
Text
id pubmed-5110995
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-51109952016-11-29 A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis Simonini, Sara Deb, Joyita Moubayidin, Laila Stephenson, Pauline Valluru, Manoj Freire-Rios, Alejandra Sorefan, Karim Weijers, Dolf Friml, Jiří Østergaard, Lars Genes Dev Research Paper Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants. Cold Spring Harbor Laboratory Press 2016-10-15 /pmc/articles/PMC5110995/ /pubmed/27898393 http://dx.doi.org/10.1101/gad.285361.116 Text en © 2016 Simonini et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genes & Development , is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
spellingShingle Research Paper
Simonini, Sara
Deb, Joyita
Moubayidin, Laila
Stephenson, Pauline
Valluru, Manoj
Freire-Rios, Alejandra
Sorefan, Karim
Weijers, Dolf
Friml, Jiří
Østergaard, Lars
A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis
title A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis
title_full A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis
title_fullStr A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis
title_full_unstemmed A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis
title_short A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis
title_sort noncanonical auxin-sensing mechanism is required for organ morphogenesis in arabidopsis
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110995/
https://www.ncbi.nlm.nih.gov/pubmed/27898393
http://dx.doi.org/10.1101/gad.285361.116
work_keys_str_mv AT simoninisara anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT debjoyita anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT moubayidinlaila anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT stephensonpauline anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT vallurumanoj anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT freireriosalejandra anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT sorefankarim anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT weijersdolf anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT frimljiri anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT østergaardlars anoncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT simoninisara noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT debjoyita noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT moubayidinlaila noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT stephensonpauline noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT vallurumanoj noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT freireriosalejandra noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT sorefankarim noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT weijersdolf noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT frimljiri noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis
AT østergaardlars noncanonicalauxinsensingmechanismisrequiredfororganmorphogenesisinarabidopsis