Cargando…

Antidiabetic and hypolipidemic activities of hydroethanolic root extract of Uvaria chamae in streptozotocin induced diabetic albino rats

BACKGROUND: Diabetes mellitus is a metabolic disorder of multiple aetiology characterised by hyperglycemia resulting from defects in insulin secretion, insulin action or both. It is a global epidemic ravaging both developed and developing countries. The situation will worsen if nothing is done urgen...

Descripción completa

Detalles Bibliográficos
Autores principales: Emordi, Jonathan Emeka, Agbaje, Esther Oluwatoyin, Oreagba, Ibrahim Adekunle, Iribhogbe, Osede Ignis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111340/
https://www.ncbi.nlm.nih.gov/pubmed/27846886
http://dx.doi.org/10.1186/s12906-016-1450-0
Descripción
Sumario:BACKGROUND: Diabetes mellitus is a metabolic disorder of multiple aetiology characterised by hyperglycemia resulting from defects in insulin secretion, insulin action or both. It is a global epidemic ravaging both developed and developing countries. The situation will worsen if nothing is done urgently. In fact, the need to identify natural products with antidiabetic potentials is of great importance as supported by several research efforts all over the world, in search of antidiabetic plant based products that are safe and efficacious. Available literatures show that several phytochemicals with antidiabetic properties have been identified in certain plants amongst which include Uvaria chamae. The potentials of Uvaria chamae as an antidiabetic and hypolipidemic drug-candidate are thus tested. METHODS: Diabetes mellitus was experimentally induced after the rats were fasted overnight by administering intraperitoneally, 60 mg/kg streptozotocin. After 72 h, the rats with plasma glucose levels >200 mg/dl were classified as diabetic. A total of six groups containing five rats per group were used. One group of diabetic rats was untreated. Three diabetic groups, each were treated orally with 100, 250 and 400 mg/kg body weight of the extract. Another diabetic group was treated with insulin (0.5 IU/kg) subcutaneously. The control received 0.5 ml (2% solution) of acacia orally. The treatment was for 8 days. The effects of the extract on weight, plasma glucose and other biochemical parameters were evaluated using standard procedures. RESULTS: The diabetic rats treated with the extract showed significant reductions (p < 0.05) in weight, plasma glucose levels, low density lipoprotein and cholesterol compared with the control. The 100, 250 and 400 mg/kg body weight of the extract showed maximum glucose reduction of 85.16, 81.50 and 86.02% respectively. Histologically the pancreas of the diabetic rats treated with the extract, showed clusters of variably sized regenerated islet of Langerhans within sheets of normal exocrine pancreas, while the pancreas of diabetic rats treated with insulin showed no islet of Langerhans. CONCLUSION: The study showed that Uvaria chamae caused weight loss and has good hypoglycemic and hypolipidemic activities that may reduce the risk of developing cardiovascular diseases.