Cargando…
Scale-Dependent Signal Identification in Low-Dimensional Subspace: Motor Imagery Task Classification
Motor imagery electroencephalography (EEG) has been successfully used in locomotor rehabilitation programs. While the noise-assisted multivariate empirical mode decomposition (NA-MEMD) algorithm has been utilized to extract task-specific frequency bands from all channels in the same scale as the int...
Autores principales: | She, Qingshan, Gan, Haitao, Ma, Yuliang, Luo, Zhizeng, Potter, Tom, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112353/ https://www.ncbi.nlm.nih.gov/pubmed/27891256 http://dx.doi.org/10.1155/2016/7431012 |
Ejemplares similares
-
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Regularized RKHS-Based Subspace Learning for Motor Imagery Classification
por: Jiang, Linzhi, et al.
Publicado: (2022) -
The classification of motor imagery response: an accuracy enhancement through the ensemble of random subspace k-NN
por: Rashid, Mamunur, et al.
Publicado: (2021)