Cargando…
Isolation and Characterization of Pepsin-soluble Collagens from Bones, Skins, and Tendons in Duck Feet
The objectives of this study were conducted to characterize pepsin-soluble collagen (PSC) extracted from bones (PSC-B), skins (PSC-S), and tendons (PSC-T) of duck feet and to determine their thermal and structural properties, for better practical application of each part of duck feet as a novel sour...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Food Science of Animal Resources
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112430/ https://www.ncbi.nlm.nih.gov/pubmed/27857543 http://dx.doi.org/10.5851/kosfa.2016.36.5.665 |
Sumario: | The objectives of this study were conducted to characterize pepsin-soluble collagen (PSC) extracted from bones (PSC-B), skins (PSC-S), and tendons (PSC-T) of duck feet and to determine their thermal and structural properties, for better practical application of each part of duck feet as a novel source for collagen. PSC was extracted from each part of duck feet by using 0.5 M acetic acid containing 5% (w/w) pepsin. Electrophoretic patterns showed that the ratio between α(1) and α(2) chains, which are subunit polypeptides forming collagen triple helix, was approximately 1:1 in all PSCs of duck feet. PSC-B had slightly higher molecular weights for α(1) and α(2) chains than PSC-S and PSC-T. From the results of differential scanning calorimetry (DSC), higher onset (beginning point of melting) and peak temperatures (maximum point of curve) were found at PSC-B compared to PSC-S and PSC-T (p<0.05). Fourier transform infrared spectroscopy (FT-IR) presented that PSC-S and PSC-T had similar intermolecular structures and chemical bonds, whereas PSC-B exhibited slight difference in amide A region. Irregular dense sheet-like films linked by random-coiled filaments were observed similarly. Our findings indicate that PSCs of duck feet might be characterized similarly as a mixture of collagen type I and II and suggest that duck feet could be used for collagen extraction without deboning and/or separation processes. |
---|