Cargando…
A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
Single-cell RNA sequencing (scRNA-seq) is widely used to profile the transcriptome of individual cells. This provides biological resolution that cannot be matched by bulk RNA sequencing, at the cost of increased technical noise and data complexity. The differences between scRNA-seq and bulk RNA-seq...
Autores principales: | Lun, Aaron T.L., McCarthy, Davis J., Marioni, John C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112579/ https://www.ncbi.nlm.nih.gov/pubmed/27909575 http://dx.doi.org/10.12688/f1000research.9501.2 |
Ejemplares similares
-
From reads to regions: a Bioconductor workflow to detect differential binding in ChIP-seq data
por: Lun, Aaron T. L., et al.
Publicado: (2016) -
A step-by-step guide to analyzing CAGE data using R/Bioconductor
por: Thodberg, Malte, et al.
Publicado: (2019) -
A Bioconductor workflow for processing and analysing spatial proteomics data
por: Breckels, Lisa M., et al.
Publicado: (2018) -
A Bioconductor workflow for processing, evaluating, and interpreting expression proteomics data
por: Hutchings, Charlotte, et al.
Publicado: (2023) -
TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages
por: Silva, Tiago C., et al.
Publicado: (2016)