Cargando…
Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D
In our previous studies, sulfatase 2 (Sulf2) was found to upregulate vascular endothelial growth factor-D (VEGF-D) expression in breast cancer. As VEGF-D plays an important role in lymphangiogenesis, we hypothesized that Sulf2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D. To e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112611/ https://www.ncbi.nlm.nih.gov/pubmed/27748846 http://dx.doi.org/10.3892/or.2016.5143 |
_version_ | 1782468035436609536 |
---|---|
author | Zhu, Chenfang Qi, Xiaoliang Zhou, Xin Nie, Xin Gu, Yan |
author_facet | Zhu, Chenfang Qi, Xiaoliang Zhou, Xin Nie, Xin Gu, Yan |
author_sort | Zhu, Chenfang |
collection | PubMed |
description | In our previous studies, sulfatase 2 (Sulf2) was found to upregulate vascular endothelial growth factor-D (VEGF-D) expression in breast cancer. As VEGF-D plays an important role in lymphangiogenesis, we hypothesized that Sulf2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D. To evaluate the functions of Sulf2 on lymphangiogenesis in breast cancer, proliferation, apoptosis, cell cycle, cell mobility and tube-formation of lymphatic endothelial cells (LECs) were measured in vitro. Lymphangiogenesis in nude mouse ears and breast cancer xenografts were examined in vivo. Furthermore, the expression levels of related signaling pathway genes were screened and verified in LECs. We found that Sulf2 significantly increased the mobility and tube formation of the LECs, inhibited cisplatin-induced LEC apoptosis, but had no effect on cell proliferation and the cell cycle. Moreover, recombinant Sulf2 (rSulf2) combined with VEGF-D further promoted the proliferation, cell cycle, mobility and tube-like structure formation in the LECs, and at the same time inhibited cisplatin-induced apoptosis especially in the late stage. Sulf2 also significantly increased the density of lymphatic vessels in mouse ears and breast cancer xenografts in vivo. AKT1 was also shown to be upregulated and activated by Sulf2. Our results confirmed that Sulf2 facilitated lymphangiogenesis in breast cancer cells by regulating VEGF-D and that the AKT1-related signaling pathway was involved. |
format | Online Article Text |
id | pubmed-5112611 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-51126112016-11-28 Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D Zhu, Chenfang Qi, Xiaoliang Zhou, Xin Nie, Xin Gu, Yan Oncol Rep Articles In our previous studies, sulfatase 2 (Sulf2) was found to upregulate vascular endothelial growth factor-D (VEGF-D) expression in breast cancer. As VEGF-D plays an important role in lymphangiogenesis, we hypothesized that Sulf2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D. To evaluate the functions of Sulf2 on lymphangiogenesis in breast cancer, proliferation, apoptosis, cell cycle, cell mobility and tube-formation of lymphatic endothelial cells (LECs) were measured in vitro. Lymphangiogenesis in nude mouse ears and breast cancer xenografts were examined in vivo. Furthermore, the expression levels of related signaling pathway genes were screened and verified in LECs. We found that Sulf2 significantly increased the mobility and tube formation of the LECs, inhibited cisplatin-induced LEC apoptosis, but had no effect on cell proliferation and the cell cycle. Moreover, recombinant Sulf2 (rSulf2) combined with VEGF-D further promoted the proliferation, cell cycle, mobility and tube-like structure formation in the LECs, and at the same time inhibited cisplatin-induced apoptosis especially in the late stage. Sulf2 also significantly increased the density of lymphatic vessels in mouse ears and breast cancer xenografts in vivo. AKT1 was also shown to be upregulated and activated by Sulf2. Our results confirmed that Sulf2 facilitated lymphangiogenesis in breast cancer cells by regulating VEGF-D and that the AKT1-related signaling pathway was involved. D.A. Spandidos 2016-12 2016-10-04 /pmc/articles/PMC5112611/ /pubmed/27748846 http://dx.doi.org/10.3892/or.2016.5143 Text en Copyright: © Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhu, Chenfang Qi, Xiaoliang Zhou, Xin Nie, Xin Gu, Yan Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D |
title | Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D |
title_full | Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D |
title_fullStr | Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D |
title_full_unstemmed | Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D |
title_short | Sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating VEGF-D |
title_sort | sulfatase 2 facilitates lymphangiogenesis in breast cancer by regulating vegf-d |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112611/ https://www.ncbi.nlm.nih.gov/pubmed/27748846 http://dx.doi.org/10.3892/or.2016.5143 |
work_keys_str_mv | AT zhuchenfang sulfatase2facilitateslymphangiogenesisinbreastcancerbyregulatingvegfd AT qixiaoliang sulfatase2facilitateslymphangiogenesisinbreastcancerbyregulatingvegfd AT zhouxin sulfatase2facilitateslymphangiogenesisinbreastcancerbyregulatingvegfd AT niexin sulfatase2facilitateslymphangiogenesisinbreastcancerbyregulatingvegfd AT guyan sulfatase2facilitateslymphangiogenesisinbreastcancerbyregulatingvegfd |