Cargando…
A New Soft Computing Method for K-Harmonic Means Clustering
The K-harmonic means clustering algorithm (KHM) is a new clustering method used to group data such that the sum of the harmonic averages of the distances between each entity and all cluster centroids is minimized. Because it is less sensitive to initialization than K-means (KM), many researchers hav...
Autores principales: | Yeh, Wei-Chang, Jiang, Yunzhi, Chen, Yee-Fen, Chen, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112810/ https://www.ncbi.nlm.nih.gov/pubmed/27846228 http://dx.doi.org/10.1371/journal.pone.0164754 |
Ejemplares similares
-
Correction: A New Soft Computing Method for K-Harmonic Means Clustering
por: Yeh, Wei-Chang, et al.
Publicado: (2017) -
Deep soft K-means clustering with self-training for single-cell RNA sequence data
por: Chen, Liang, et al.
Publicado: (2020) -
Efficient Privacy-Preserving K-Means Clustering from Secret-Sharing-Based Secure Three-Party Computation
por: Wei, Weiming, et al.
Publicado: (2022) -
K-means and hierarchical clustering with Python
por: Grus, Joel
Publicado: (2016) -
k-means Cluster Shape Implications
por: Kłopotek, Mieczysław A., et al.
Publicado: (2020)