Cargando…

Bacterially-Associated Transcriptional Remodelling in a Distinct Genomic Subtype of Colorectal Cancer Provides a Plausible Molecular Basis for Disease Development

The relevance of specific microbial colonisation to colorectal cancer (CRC) disease pathogenesis is increasingly recognised, but our understanding of possible underlying molecular mechanisms that may link colonisation to disease in vivo remains limited. Here, we investigate the relationships between...

Descripción completa

Detalles Bibliográficos
Autores principales: Lennard, Katie S., Goosen, Ryan W., Blackburn, Jonathan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112903/
https://www.ncbi.nlm.nih.gov/pubmed/27846243
http://dx.doi.org/10.1371/journal.pone.0166282
Descripción
Sumario:The relevance of specific microbial colonisation to colorectal cancer (CRC) disease pathogenesis is increasingly recognised, but our understanding of possible underlying molecular mechanisms that may link colonisation to disease in vivo remains limited. Here, we investigate the relationships between the most commonly studied CRC-associated bacteria (Enterotoxigenic Bacteroides fragilis, pks+ Escherichia coli, Fusobacterium spp., afaC+ E. coli, Enterococcus faecalis & Enteropathogenic E. coli) and altered transcriptomic and methylation profiles of CRC patients, in order to gain insight into the potential contribution of these bacteria in the aetiopathogenesis of CRC. We show that colonisation by E. faecalis and high levels of Fusobacterium is associated with a specific transcriptomic subtype of CRC that is characterised by CpG island methylation, microsatellite instability and a significant increase in inflammatory and DNA damage pathways. Analysis of the significant, bacterially-associated changes in host gene expression, both at the level of individual genes as well as pathways, revealed a transcriptional remodeling that provides a plausible mechanistic link between specific bacterial colonisation and colorectal cancer disease development and progression in this subtype; these included upregulation of REG3A, REG1A and REG1P in the case of high-level colonization by Fusobacterium, and CXCL10 and BMI1 in the case of colonisation by E. faecalis. The enrichment of both E. faecalis and Fusobacterium in this CRC subtype suggests that polymicrobial colonisation of the colonic epithelium may well be an important aspect of colonic tumourigenesis.