Cargando…

The invariances of power law size distributions

Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things...

Descripción completa

Detalles Bibliográficos
Autor principal: Frank, Steven A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115223/
https://www.ncbi.nlm.nih.gov/pubmed/27928497
http://dx.doi.org/10.12688/f1000research.9452.3
_version_ 1782468488399421440
author Frank, Steven A.
author_facet Frank, Steven A.
author_sort Frank, Steven A.
collection PubMed
description Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things as different as tree size and enzyme rate follow similarly simple patterns? Here I analyze such patterns by their invariant properties. For example, a common pattern should not change when adding a constant value to all observations. That shift is essentially the renumbering of the points on a ruler without changing the metric information provided by the ruler. A ruler is shift invariant only when its scale is properly calibrated to the pattern being measured. Stretch invariance corresponds to the conservation of the total amount of something, such as the total biomass and consequently the average size. Rotational invariance corresponds to pattern that does not depend on the order in which underlying processes occur, for example, a scale that additively combines the component processes leading to observed values. I use tree size as an example to illustrate how the key invariances shape pattern. A simple interpretation of common pattern follows. That simple interpretation connects the normal distribution to a wide variety of other common patterns through the transformations of scale set by the fundamental invariances.
format Online
Article
Text
id pubmed-5115223
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher F1000Research
record_format MEDLINE/PubMed
spelling pubmed-51152232016-12-06 The invariances of power law size distributions Frank, Steven A. F1000Res Research Article Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things as different as tree size and enzyme rate follow similarly simple patterns? Here I analyze such patterns by their invariant properties. For example, a common pattern should not change when adding a constant value to all observations. That shift is essentially the renumbering of the points on a ruler without changing the metric information provided by the ruler. A ruler is shift invariant only when its scale is properly calibrated to the pattern being measured. Stretch invariance corresponds to the conservation of the total amount of something, such as the total biomass and consequently the average size. Rotational invariance corresponds to pattern that does not depend on the order in which underlying processes occur, for example, a scale that additively combines the component processes leading to observed values. I use tree size as an example to illustrate how the key invariances shape pattern. A simple interpretation of common pattern follows. That simple interpretation connects the normal distribution to a wide variety of other common patterns through the transformations of scale set by the fundamental invariances. F1000Research 2016-11-28 /pmc/articles/PMC5115223/ /pubmed/27928497 http://dx.doi.org/10.12688/f1000research.9452.3 Text en Copyright: © 2016 Frank SA http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Frank, Steven A.
The invariances of power law size distributions
title The invariances of power law size distributions
title_full The invariances of power law size distributions
title_fullStr The invariances of power law size distributions
title_full_unstemmed The invariances of power law size distributions
title_short The invariances of power law size distributions
title_sort invariances of power law size distributions
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115223/
https://www.ncbi.nlm.nih.gov/pubmed/27928497
http://dx.doi.org/10.12688/f1000research.9452.3
work_keys_str_mv AT frankstevena theinvariancesofpowerlawsizedistributions
AT frankstevena invariancesofpowerlawsizedistributions