Cargando…
The invariances of power law size distributions
Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things...
Autor principal: | Frank, Steven A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115223/ https://www.ncbi.nlm.nih.gov/pubmed/27928497 http://dx.doi.org/10.12688/f1000research.9452.3 |
Ejemplares similares
-
The Interrupted Power Law and the Size of Shadow Banking
por: Fiaschi, Davide, et al.
Publicado: (2014) -
Power Law Distributions of Patents as Indicators of Innovation
por: O’Neale, Dion R. J., et al.
Publicado: (2012) -
Stationarity of the inter-event power-law distributions
por: Gandica, Yerali, et al.
Publicado: (2017) -
Lognormals, power laws and double power laws in the distribution of frequencies of harmonic codewords from classical music
por: Serra-Peralta, Marc, et al.
Publicado: (2022) -
Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis
por: Wong, Wing-Cheong, et al.
Publicado: (2018)