Cargando…

Leaf‐Like Graphene‐Oxide‐Wrapped Sulfur for High‐Performance Lithium–Sulfur Battery

Carbon/sulfur composites are attracting extensive attention because of their improved performances for Li–S batteries. However, the achievements are generally based on the low S‐content in the composites and the low S‐loading on the electrode. Herein, a leaf‐like graphene oxide (GO), which includes...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Shouyi, Guo, Ziyang, Wang, Lina, Hu, Shuang, Wang, Yonggang, Xia, Yongyao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115426/
https://www.ncbi.nlm.nih.gov/pubmed/27980964
http://dx.doi.org/10.1002/advs.201500071
Descripción
Sumario:Carbon/sulfur composites are attracting extensive attention because of their improved performances for Li–S batteries. However, the achievements are generally based on the low S‐content in the composites and the low S‐loading on the electrode. Herein, a leaf‐like graphene oxide (GO), which includes an inherent carbon nanotube midrib in the GO plane, is synthesized for preparing GO/S composites. Owing to the inherent high conductivity of carbon nanotube midribs and the abundant surface groups of GO for S‐immobilization, the composite with an S‐content of 60 wt% exhibits ultralong cycling stability over 1000 times with a low capacity decay of 0.033% per cycle and a high rate up to 4C. When the S‐content is increased to 75 wt%, the composite still shows a perfect cycling performance over 1000 cycles. Even with the high S‐loading of 2.7 mg cm(−2) on the electrode and the high S‐content of 85 wt%, it still shows a promising cycling performance over 600 cycles.