Cargando…

Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp2(+/−) mice, using liquid chromatography-tandem mass spectrometry

To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography – tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were...

Descripción completa

Detalles Bibliográficos
Autores principales: Forrest, Caroline M., Kennedy, Peter G.E., Rodgers, Jean, Dalton, R. Neil, Turner, Charles, Darlington, L. Gail, Cobb, Stuart R., Stone, Trevor W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pergamon Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115650/
https://www.ncbi.nlm.nih.gov/pubmed/27623092
http://dx.doi.org/10.1016/j.neuint.2016.09.012
Descripción
Sumario:To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography – tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.055). No significant changes were observed in any of the other kynurenine metabolites. The results confirm the marked increase in the accumulation of some neuroactive kynurenines when KMO is inhibited, and re-emphasise the potential importance of changes in anthranilic acid. The prolonged duration of metabolite accumulation in the embryo brains indicates a trapping of compounds within the embryonic CNS independently of maternal levels. When brains were examined from young mice heterozygous for the meCP2 gene – a potential model for Rett syndrome - no differences were noted from control mice, suggesting that the proposed roles for kynurenines in autism spectrum disorder are not relevant to Rett syndrome, supporting its recognition as a distinct, independent, condition.