Cargando…

Bivalence Mn(5)O(8) with hydroxylated interphase for high-voltage aqueous sodium-ion storage

Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shan, Xiaoqiang, Charles, Daniel S., Lei, Yinkai, Qiao, Ruimin, Wang, Guofeng, Yang, Wanli, Feygenson, Mikhail, Su, Dong, Teng, Xiaowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116065/
https://www.ncbi.nlm.nih.gov/pubmed/27845345
http://dx.doi.org/10.1038/ncomms13370
Descripción
Sumario:Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn(5)O(8) pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge–discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn(5)O(8) suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn(2+)/Mn(4+) redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn(5)O(8).