Cargando…
Compensation of feature selection biases accompanied with improved predictive performance for binary classification by using a novel ensemble feature selection approach
MOTIVATION: Biomarker discovery methods are essential to identify a minimal subset of features (e.g., serum markers in predictive medicine) that are relevant to develop prediction models with high accuracy. By now, there exist diverse feature selection methods, which either are embedded, combined, o...
Autores principales: | Neumann, Ursula, Riemenschneider, Mona, Sowa, Jan-Peter, Baars, Theodor, Kälsch, Julia, Canbay, Ali, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116216/ https://www.ncbi.nlm.nih.gov/pubmed/27891179 http://dx.doi.org/10.1186/s13040-016-0114-4 |
Ejemplares similares
-
In Acute Myocardial Infarction Liver Parameters Are Associated With Stenosis Diameter
por: Baars, Theodor, et al.
Publicado: (2016) -
EFS: an ensemble feature selection tool implemented as R-package and web-application
por: Neumann, Ursula, et al.
Publicado: (2017) -
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
por: Baars, Theodor, et al.
Publicado: (2018) -
Non-invasive assessment of NAFLD as systemic disease—A machine learning perspective
por: Canbay, Ali, et al.
Publicado: (2019) -
eccCL: parallelized GPU implementation of Ensemble Classifier Chains
por: Riemenschneider, Mona, et al.
Publicado: (2017)