Cargando…
Wavelet Packet Feature Assessment for High-Density Myoelectric Pattern Recognition and Channel Selection toward Stroke Rehabilitation
This study presents wavelet packet feature assessment of neural control information in paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking advantage of high-resolution time–frequency representations of surface electromyogram (EMG) signals. On this basis, a nove...
Autores principales: | Wang, Dongqing, Zhang, Xu, Gao, Xiaoping, Chen, Xiang, Zhou, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116463/ https://www.ncbi.nlm.nih.gov/pubmed/27917149 http://dx.doi.org/10.3389/fneur.2016.00197 |
Ejemplares similares
-
Wavelet packets and their statistical applications
por: Ahmad, Khalil, et al.
Publicado: (2018) -
Myoelectric Pattern Recognition Performance Enhancement Using Nonlinear Features
por: Islam, Md. Johirul, et al.
Publicado: (2022) -
Solenoid and non-solenoid protein recognition using stationary wavelet packet transform
por: Vo, An, et al.
Publicado: (2010) -
Classification complexity in myoelectric pattern recognition
por: Nilsson, Niclas, et al.
Publicado: (2017) -
Myoelectrically controlled wrist robot for stroke rehabilitation
por: Song, Rong, et al.
Publicado: (2013)