Cargando…
Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm
Short-pulse fibre lasers are a complex dynamical system possessing a broad space of operating states that can be accessed through control of cavity parameters. Determination of target regimes is a multi-parameter global optimisation problem. Here, we report the implementation of a genetic algorithm...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116642/ https://www.ncbi.nlm.nih.gov/pubmed/27869193 http://dx.doi.org/10.1038/srep37616 |
Sumario: | Short-pulse fibre lasers are a complex dynamical system possessing a broad space of operating states that can be accessed through control of cavity parameters. Determination of target regimes is a multi-parameter global optimisation problem. Here, we report the implementation of a genetic algorithm to intelligently locate optimum parameters for stable single-pulse mode- locking in a Figure-8 fibre laser, and fully automate the system turn-on procedure. Stable ultrashort pulses are repeatably achieved by employing a compound fitness function that monitors both temporal and spectral output properties of the laser. Our method of encoding photonics expertise into an algorithm and applying machine-learning principles paves the way to self-optimising ‘smart’ optical technologies. |
---|