Cargando…
In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5′-azotetrazolate Cr(III) salts
The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT(2−)) Cr(III) salts were synthesized by mea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116643/ https://www.ncbi.nlm.nih.gov/pubmed/27869221 http://dx.doi.org/10.1038/srep37587 |
Sumario: | The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT(2−)) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials. |
---|