Cargando…

Assessing SABU (Serum Anti Bisa Ular), the sole Indonesian antivenom: A proteomic analysis and neutralization efficacy study

Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, its effectiveness has not been rigorously evaluated. This study aimed to assess the protein composition and neutralization efficacy of SABU. SDS polyacrylamide gel electrophoresis, size-exclusion liquid c...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Choo Hock, Liew, Jia Lee, Tan, Kae Yi, Tan, Nget Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116744/
https://www.ncbi.nlm.nih.gov/pubmed/27869134
http://dx.doi.org/10.1038/srep37299
Descripción
Sumario:Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, its effectiveness has not been rigorously evaluated. This study aimed to assess the protein composition and neutralization efficacy of SABU. SDS polyacrylamide gel electrophoresis, size-exclusion liquid chromatography and shotgun proteomics revealed that SABU consists of F(ab’)(2) but a significant amount of dimers, protein aggregates and contaminant albumins. SABU moderately neutralized Calloselasma rhodostoma venom (potency of 12.7 mg venom neutralized per ml antivenom, or 121.8 mg venom per g antivenom protein) and Bungarus fasciatus venom (0.9 mg/ml; 8.5 mg/g) but it was weak against the venoms of Naja sputatrix (0.3 mg/ml; 2.9 mg/g), Naja sumatrana (0.2 mg/ml; 1.8 mg/g) and Bungarus candidus (0.1 mg/ml; 1.0 mg/g). In comparison, NPAV, the Thai Neuro Polyvalent Antivenom, outperformed SABU with greater potencies against the venoms of N. sputatrix (0.6 mg/ml; 8.3 mg/g), N. sumatrana (0.5 mg/ml; 7.1 mg/g) and B. candidus (1.7 mg/ml; 23.2 mg/g). The inferior efficacy of SABU implies that a large antivenom dose is required clinically for effective treatment. Besides, the antivenom contains numerous impurities e.g., albumins that greatly increase the risk of hypersensitivity. Together, the findings indicate that the production of SABU warrants further improvement.