Cargando…
Comparison of imputation variance estimators
Appropriate imputation inference requires both an unbiased imputation estimator and an unbiased variance estimator. The commonly used variance estimator, proposed by Rubin, can be biased when the imputation and analysis models are misspecified and/or incompatible. Robins and Wang proposed an alterna...
Autores principales: | Hughes, RA, Sterne, JAC, Tilling, K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117137/ https://www.ncbi.nlm.nih.gov/pubmed/24682265 http://dx.doi.org/10.1177/0962280214526216 |
Ejemplares similares
-
Accounting for missing data in statistical analyses: multiple imputation is not always the answer
por: Hughes, Rachael A, et al.
Publicado: (2019) -
Appropriate inclusion of interactions was needed to avoid bias in multiple imputation
por: Tilling, Kate, et al.
Publicado: (2016) -
Determining Sufficient Number of Imputations Using Variance of
Imputation Variances: Data from 2012 NAMCS Physician Workflow Mail
Survey()
por: Pan, Qiyuan, et al.
Publicado: (2014) -
Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index
por: Yang, Jian, et al.
Publicado: (2015) -
Estimation of the linear mixed integrated Ornstein–Uhlenbeck model
por: Hughes, Rachael A., et al.
Publicado: (2017)