Cargando…

cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs

BACKGROUND: We present the first sequencing data using the combinatorial probe-anchor synthesis (cPAS)-based BGISEQ-500 sequencer. Applying cPAS, we investigated the repertoire of human small non-coding RNAs and compared it to other techniques. RESULTS: Starting with repeated measurements of differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Fehlmann, Tobias, Reinheimer, Stefanie, Geng, Chunyu, Su, Xiaoshan, Drmanac, Snezana, Alexeev, Andrei, Zhang, Chunyan, Backes, Christina, Ludwig, Nicole, Hart, Martin, An, Dan, Zhu, Zhenzhen, Xu, Chongjun, Chen, Ao, Ni, Ming, Liu, Jian, Li, Yuxiang, Poulter, Matthew, Li, Yongping, Stähler, Cord, Drmanac, Radoje, Xu, Xun, Meese, Eckart, Keller, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117531/
https://www.ncbi.nlm.nih.gov/pubmed/27895807
http://dx.doi.org/10.1186/s13148-016-0287-1
_version_ 1782468821544599552
author Fehlmann, Tobias
Reinheimer, Stefanie
Geng, Chunyu
Su, Xiaoshan
Drmanac, Snezana
Alexeev, Andrei
Zhang, Chunyan
Backes, Christina
Ludwig, Nicole
Hart, Martin
An, Dan
Zhu, Zhenzhen
Xu, Chongjun
Chen, Ao
Ni, Ming
Liu, Jian
Li, Yuxiang
Poulter, Matthew
Li, Yongping
Stähler, Cord
Drmanac, Radoje
Xu, Xun
Meese, Eckart
Keller, Andreas
author_facet Fehlmann, Tobias
Reinheimer, Stefanie
Geng, Chunyu
Su, Xiaoshan
Drmanac, Snezana
Alexeev, Andrei
Zhang, Chunyan
Backes, Christina
Ludwig, Nicole
Hart, Martin
An, Dan
Zhu, Zhenzhen
Xu, Chongjun
Chen, Ao
Ni, Ming
Liu, Jian
Li, Yuxiang
Poulter, Matthew
Li, Yongping
Stähler, Cord
Drmanac, Radoje
Xu, Xun
Meese, Eckart
Keller, Andreas
author_sort Fehlmann, Tobias
collection PubMed
description BACKGROUND: We present the first sequencing data using the combinatorial probe-anchor synthesis (cPAS)-based BGISEQ-500 sequencer. Applying cPAS, we investigated the repertoire of human small non-coding RNAs and compared it to other techniques. RESULTS: Starting with repeated measurements of different specimens including solid tissues (brain and heart) and blood, we generated a median of 30.1 million reads per sample. 24.1 million mapped to the human genome and 23.3 million to the miRBase. Among six technical replicates of brain samples, we observed a median correlation of 0.98. Comparing BGISEQ-500 to HiSeq, we calculated a correlation of 0.75. The comparability to microarrays was similar for both BGISEQ-500 and HiSeq with the first one showing a correlation of 0.58 and the latter one correlation of 0.6. As for a potential bias in the detected expression distribution in blood cells, 98.6% of HiSeq reads versus 93.1% of BGISEQ-500 reads match to the 10 miRNAs with highest read count. After using miRDeep2 and employing stringent selection criteria for predicting new miRNAs, we detected 74 high-likely candidates in the cPAS sequencing reads prevalent in solid tissues and 36 candidates prevalent in blood. CONCLUSIONS: While there is apparently no ideal platform for all challenges of miRNome analyses, cPAS shows high technical reproducibility and supplements the hitherto available platforms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13148-016-0287-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5117531
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-51175312016-11-28 cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs Fehlmann, Tobias Reinheimer, Stefanie Geng, Chunyu Su, Xiaoshan Drmanac, Snezana Alexeev, Andrei Zhang, Chunyan Backes, Christina Ludwig, Nicole Hart, Martin An, Dan Zhu, Zhenzhen Xu, Chongjun Chen, Ao Ni, Ming Liu, Jian Li, Yuxiang Poulter, Matthew Li, Yongping Stähler, Cord Drmanac, Radoje Xu, Xun Meese, Eckart Keller, Andreas Clin Epigenetics Research BACKGROUND: We present the first sequencing data using the combinatorial probe-anchor synthesis (cPAS)-based BGISEQ-500 sequencer. Applying cPAS, we investigated the repertoire of human small non-coding RNAs and compared it to other techniques. RESULTS: Starting with repeated measurements of different specimens including solid tissues (brain and heart) and blood, we generated a median of 30.1 million reads per sample. 24.1 million mapped to the human genome and 23.3 million to the miRBase. Among six technical replicates of brain samples, we observed a median correlation of 0.98. Comparing BGISEQ-500 to HiSeq, we calculated a correlation of 0.75. The comparability to microarrays was similar for both BGISEQ-500 and HiSeq with the first one showing a correlation of 0.58 and the latter one correlation of 0.6. As for a potential bias in the detected expression distribution in blood cells, 98.6% of HiSeq reads versus 93.1% of BGISEQ-500 reads match to the 10 miRNAs with highest read count. After using miRDeep2 and employing stringent selection criteria for predicting new miRNAs, we detected 74 high-likely candidates in the cPAS sequencing reads prevalent in solid tissues and 36 candidates prevalent in blood. CONCLUSIONS: While there is apparently no ideal platform for all challenges of miRNome analyses, cPAS shows high technical reproducibility and supplements the hitherto available platforms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13148-016-0287-1) contains supplementary material, which is available to authorized users. BioMed Central 2016-11-21 /pmc/articles/PMC5117531/ /pubmed/27895807 http://dx.doi.org/10.1186/s13148-016-0287-1 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Fehlmann, Tobias
Reinheimer, Stefanie
Geng, Chunyu
Su, Xiaoshan
Drmanac, Snezana
Alexeev, Andrei
Zhang, Chunyan
Backes, Christina
Ludwig, Nicole
Hart, Martin
An, Dan
Zhu, Zhenzhen
Xu, Chongjun
Chen, Ao
Ni, Ming
Liu, Jian
Li, Yuxiang
Poulter, Matthew
Li, Yongping
Stähler, Cord
Drmanac, Radoje
Xu, Xun
Meese, Eckart
Keller, Andreas
cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs
title cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs
title_full cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs
title_fullStr cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs
title_full_unstemmed cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs
title_short cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs
title_sort cpas-based sequencing on the bgiseq-500 to explore small non-coding rnas
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117531/
https://www.ncbi.nlm.nih.gov/pubmed/27895807
http://dx.doi.org/10.1186/s13148-016-0287-1
work_keys_str_mv AT fehlmanntobias cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT reinheimerstefanie cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT gengchunyu cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT suxiaoshan cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT drmanacsnezana cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT alexeevandrei cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT zhangchunyan cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT backeschristina cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT ludwignicole cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT hartmartin cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT andan cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT zhuzhenzhen cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT xuchongjun cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT chenao cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT niming cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT liujian cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT liyuxiang cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT poultermatthew cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT liyongping cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT stahlercord cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT drmanacradoje cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT xuxun cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT meeseeckart cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas
AT kellerandreas cpasbasedsequencingonthebgiseq500toexploresmallnoncodingrnas