Cargando…

Flood-Induced Changes in Soil Microbial Functions as Modified by Plant Diversity

Flooding frequency is predicted to increase during the next decades, calling for a better understanding of impacts on terrestrial ecosystems and for developing strategies to mitigate potential damage. Plant diversity is expected to buffer flooding effects by providing a broad range of species’ respo...

Descripción completa

Detalles Bibliográficos
Autores principales: González Macé, Odette, Steinauer, Katja, Jousset, Alexandre, Eisenhauer, Nico, Scheu, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117659/
https://www.ncbi.nlm.nih.gov/pubmed/27870864
http://dx.doi.org/10.1371/journal.pone.0166349
Descripción
Sumario:Flooding frequency is predicted to increase during the next decades, calling for a better understanding of impacts on terrestrial ecosystems and for developing strategies to mitigate potential damage. Plant diversity is expected to buffer flooding effects by providing a broad range of species’ responses. Here we report on the response of soil processes to a severe summer flood in 2013, which affected major parts of central Europe. We compared soil microbial respiration, biomass, nutrient limitation and enzyme activity in a grassland biodiversity experiment in Germany before flooding, one week and three months after the flood. Microbial biomass was reduced in the severely flooded plots at high, but not at low plant functional group richness. Flooding alleviated microbial nitrogen limitation, presumably due the input of nutrient-rich sediments. Further, the activity of soil enzymes including 1,4-β-N-acetylglucosaminidase, phenol oxidase and peroxidase increased with flooding severity, suggesting increased chitin and lignin degradation as a consequence of the input of detritus in sediments. Flooding effects were enhanced at higher plant diversity, indicating that plant diversity temporarily reduces stability of soil processes during flooding. The long-term impacts, however, remain unknown and deserve further investigation.