Cargando…

Emergence of resistance to tyrosine kinase inhibitors in non-small-cell lung cancer can be delayed by an upfront combination with the HSP90 inhibitor onalespib

BACKGROUND: Tyrosine kinase inhibitors, such as crizotinib and erlotinib, are widely used to treat non-small-cell lung cancer, but after initial response, relapse is common because of the emergence of resistance through multiple mechanisms. Here, we investigated whether a frontline combination with...

Descripción completa

Detalles Bibliográficos
Autores principales: Courtin, Aurelie, Smyth, Tomoko, Hearn, Keisha, Saini, Harpreet K, Thompson, Neil T, Lyons, John F, Wallis, Nicola G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117788/
https://www.ncbi.nlm.nih.gov/pubmed/27673365
http://dx.doi.org/10.1038/bjc.2016.294
Descripción
Sumario:BACKGROUND: Tyrosine kinase inhibitors, such as crizotinib and erlotinib, are widely used to treat non-small-cell lung cancer, but after initial response, relapse is common because of the emergence of resistance through multiple mechanisms. Here, we investigated whether a frontline combination with an HSP90 inhibitor could delay the emergence of resistance to these inhibitors in preclinical lung cancer models. METHODS: The HSP90 inhibitor, onalespib, was combined with either crizotinib or erlotinib in ALK- or EGFR-activated xenograft models respectively (H2228, HCC827). RESULTS: In both models, after initial response to the monotherapy kinase inhibitors, tumour relapse was observed. In contrast, tumour growth remained inhibited when treated with an onalespib/kinase inhibitor combination. Analysis of H2228 tumours, which had relapsed on crizotinib monotherapy, identified a number of clinically relevant crizotinib resistance mechanisms, suggesting that HSP90 inhibitor treatment was capable of suppressing multiple mechanisms of resistance. Resistant cell lines, derived from these tumours, retained sensitivity to onalespib (proliferation and signalling pathways were inhibited), indicating that, despite their resistance to crizotinib, they were still sensitive to HSP90 inhibition. CONCLUSIONS: Together, these preclinical data suggest that frontline combination with an HSP90 inhibitor may be a method for delaying the emergence of resistance to targeted therapies.