Cargando…

D-PSA-K: A Model for Estimating the Accumulated Potential Damage on Kiwifruit Canes Caused by Bacterial Canker during the Growing and Overwintering Seasons

We developed a model, termed D-PSA-K, to estimate the accumulated potential damage on kiwifruit canes caused by bacterial canker during the growing and overwintering seasons. The model consisted of three parts including estimation of the amount of necrotic lesion in a non-frozen environment, the rat...

Descripción completa

Detalles Bibliográficos
Autores principales: Do, Ki Seok, Chung, Bong Nam, Joa, Jae Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Plant Pathology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117862/
https://www.ncbi.nlm.nih.gov/pubmed/27904460
http://dx.doi.org/10.5423/PPJ.OA.03.2016.0068
Descripción
Sumario:We developed a model, termed D-PSA-K, to estimate the accumulated potential damage on kiwifruit canes caused by bacterial canker during the growing and overwintering seasons. The model consisted of three parts including estimation of the amount of necrotic lesion in a non-frozen environment, the rate of necrosis increase in a freezing environment during the overwintering season, and the amount of necrotic lesion on kiwifruit canes caused by bacterial canker during the overwintering and growing seasons. We evaluated the model’s accuracy by comparing the observed maximum disease incidence on kiwifruit canes against the damage estimated using weather and disease data collected at Wando during 1994–1997 and at Seogwipo during 2014–2015. For the Hayward cultivar, D-PSA-K estimated the accumulated damage as approximately nine times the observed maximum disease incidence. For the Hort16A cultivar, the accumulated damage estimated by D-PSA-K was high when the observed disease incidence was high. D-PSA-K could assist kiwifruit growers in selecting optimal sites for kiwifruit cultivation and establishing improved production plans by predicting the loss in kiwifruit production due to bacterial canker, using past weather or future climate change data.